亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dementia risk prediction in individuals with mild cognitive impairment: a comparison of Cox regression and machine learning models

比例危险模型 随机森林 回归 人工智能 机器学习 Lasso(编程语言) 统计 回归分析 支持向量机 计算机科学 梯度升压 数学 万维网
作者
Meng Wang,Matthew Greenberg,Nils D. Forkert,Thierry Chekouo,Gabriel Afriyie,Zahinoor Ismail,Eric E. Smith,Tolulope T. Sajobi
出处
期刊:BMC Medical Research Methodology [BioMed Central]
卷期号:22 (1) 被引量:7
标识
DOI:10.1186/s12874-022-01754-y
摘要

Cox proportional hazards regression models and machine learning models are widely used for predicting the risk of dementia. Existing comparisons of these models have mostly been based on empirical datasets and have yielded mixed results. This study examines the accuracy of various machine learning and of the Cox regression models for predicting time-to-event outcomes using Monte Carlo simulation in people with mild cognitive impairment (MCI).The predictive accuracy of nine time-to-event regression and machine learning models were investigated. These models include Cox regression, penalized Cox regression (with Ridge, LASSO, and elastic net penalties), survival trees, random survival forests, survival support vector machines, artificial neural networks, and extreme gradient boosting. Simulation data were generated using study design and data characteristics of a clinical registry and a large community-based registry of patients with MCI. The predictive performance of these models was evaluated based on three-fold cross-validation via Harrell's concordance index (c-index), integrated calibration index (ICI), and integrated brier score (IBS).Cox regression and machine learning model had comparable predictive accuracy across three different performance metrics and data-analytic conditions. The estimated c-index values for Cox regression, random survival forests, and extreme gradient boosting were 0.70, 0.69 and 0.70, respectively, when the data were generated from a Cox regression model in a large sample-size conditions. In contrast, the estimated c-index values for these models were 0.64, 0.64, and 0.65 when the data were generated from a random survival forest in a large sample size conditions. Both Cox regression and random survival forest had the lowest ICI values (0.12 for a large sample size and 0.18 for a small sample size) among all the investigated models regardless of sample size and data generating model.Cox regression models have comparable, and sometimes better predictive performance, than more complex machine learning models. We recommend that the choice among these models should be guided by important considerations for research hypotheses, model interpretability, and type of data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JonyQ完成签到,获得积分20
1秒前
阿治完成签到 ,获得积分0
2秒前
4秒前
6秒前
Jenojam发布了新的文献求助10
9秒前
清修发布了新的文献求助10
10秒前
熊有鹏发布了新的文献求助10
14秒前
JonyQ发布了新的文献求助10
15秒前
勤恳马里奥应助666采纳,获得10
44秒前
666完成签到,获得积分10
49秒前
1分钟前
缥缈平彤完成签到 ,获得积分10
1分钟前
MchemG应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
可爱的函函应助清修采纳,获得10
1分钟前
yu完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
清修发布了新的文献求助10
2分钟前
熊有鹏完成签到,获得积分20
2分钟前
香蕉觅云应助熊猫侠采纳,获得10
2分钟前
2分钟前
熊猫侠发布了新的文献求助10
2分钟前
2分钟前
2分钟前
小二郎应助热情金针菇采纳,获得10
2分钟前
yuyu完成签到,获得积分10
2分钟前
斯寜应助鱼鱼鱼采纳,获得10
3分钟前
酷波er应助清修采纳,获得10
3分钟前
weilei完成签到,获得积分10
3分钟前
wanci应助cc采纳,获得10
3分钟前
4分钟前
4分钟前
cc发布了新的文献求助10
4分钟前
清修发布了新的文献求助10
4分钟前
科研通AI5应助郑林采纳,获得10
4分钟前
kun完成签到 ,获得积分10
4分钟前
4分钟前
5分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784795
求助须知:如何正确求助?哪些是违规求助? 3330055
关于积分的说明 10244140
捐赠科研通 3045395
什么是DOI,文献DOI怎么找? 1671660
邀请新用户注册赠送积分活动 800577
科研通“疑难数据库(出版商)”最低求助积分说明 759483