糖尿病肾病
氧化应激
炎症
纤维化
系膜细胞
内分泌学
肾病
化学
活力测定
内科学
糖尿病
细胞生长
肾
医学
细胞
生物化学
作者
Xichao Wang,Rui-li Song,Zhuo Li
摘要
As one of complications of diabetes mellitus, diabetic nephropathy is related to renal dysfunction. Membrane metalloendopeptidase (MME) is associated with the pathogenesis of diabetic nephropathy and exerts a protective function in high glucose (HG)-treated podocytes. Salviolone, one of important bioactive components from Salvia miltiorrhiza, possesses an anti-inflammatory activity. However, the roles of salviolone in renal mesangial cell dysfunction under HG condition remain unknown. The targets of salviolone in diabetic nephropathy were predicted by bioinformatics analysis. Relative mRNA level of MME was detected by qPCR in HG-treated human renal mesangial cells (HRMCs). Cell viability was analyzed using CCK-8 assay. Cell proliferation was investigated by EdU staining. Oxidative stress was evaluated by detection of ROS generation and levels of oxidative stress-related biomarkers. The inflammatory cytokines and fibrosis-related biomarkers were examined by ELISA. Our results showed that MME expression was decreased in diabetic nephropathy and HG-treated HRMCs. Salviolone increased MME level in HG-treated HRMCs. Salviolone mitigated HG-induced HRMC proliferation by increasing MME expression. Salviolone attenuated HG-induced ROS generation, MDA level increase, and SOD activity decrease through upregulating MME expression. Moreover, salviolone suppressed HG-induced increase of levels of TNF-α, IL-1β, IL-6, fibronectin, and collagen IV through upregulating MME expression. In conclusion, salviolone attenuates proliferation, oxidative stress, inflammation, and fibrosis in HG-treated HRMCs through upregulating MME expression.
科研通智能强力驱动
Strongly Powered by AbleSci AI