The Community Coevolution Model with Application to the Study of Evolutionary Relationships between Genes Based on Phylogenetic Profiles

系统发育树 生物 特质 系统发育比较方法 共同进化 进化生物学 成对比较 系统发育学 遗传建筑学 数量性状位点 基因 遗传学 人工智能 计算机科学 程序设计语言
作者
Chaoyue Liu,Toby Kenney,Robert G. Beiko,Hong Gu
出处
期刊:Systematic Biology [Oxford University Press]
卷期号:72 (3): 559-574 被引量:4
标识
DOI:10.1093/sysbio/syac052
摘要

Abstract Organismal traits can evolve in a coordinated way, with correlated patterns of gains and losses reflecting important evolutionary associations. Discovering these associations can reveal important information about the functional and ecological linkages among traits. Phylogenetic profiles treat individual genes as traits distributed across sets of genomes and can provide a fine-grained view of the genetic underpinnings of evolutionary processes in a set of genomes. Phylogenetic profiling has been used to identify genes that are functionally linked and to identify common patterns of lateral gene transfer in microorganisms. However, comparative analysis of phylogenetic profiles and other trait distributions should take into account the phylogenetic relationships among the organisms under consideration. Here, we propose the Community Coevolution Model (CCM), a new coevolutionary model to analyze the evolutionary associations among traits, with a focus on phylogenetic profiles. In the CCM, traits are considered to evolve as a community with interactions, and the transition rate for each trait depends on the current states of other traits. Surpassing other comparative methods for pairwise trait analysis, CCM has the additional advantage of being able to examine multiple traits as a community to reveal more dependency relationships. We also develop a simulation procedure to generate phylogenetic profiles with correlated evolutionary patterns that can be used as benchmark data for evaluation purposes. A simulation study demonstrates that CCM is more accurate than other methods including the Jaccard Index and three tree-aware methods. The parameterization of CCM makes the interpretation of the relations between genes more direct, which leads to Darwin’s scenario being identified easily based on the estimated parameters. We show that CCM is more efficient and fits real data better than other methods resulting in higher likelihood scores with fewer parameters. An examination of 3786 phylogenetic profiles across a set of 659 bacterial genomes highlights linkages between genes with common functions, including many patterns that would not have been identified under a nonphylogenetic model of common distribution. We also applied the CCM to 44 proteins in the well-studied Mitochondrial Respiratory Complex I and recovered associations that mapped well onto the structural associations that exist in the complex. [Coevolution; evolutionary rates; gene network; graphical models; phylogenetic profiles; phylogeny.]

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mafangzhou关注了科研通微信公众号
刚刚
ll发布了新的文献求助10
1秒前
雨林发布了新的文献求助10
1秒前
学术大拿发布了新的文献求助10
2秒前
2秒前
3秒前
4秒前
山水之乐发布了新的文献求助10
4秒前
5秒前
英吉利25发布了新的文献求助10
6秒前
7秒前
7秒前
sweet完成签到 ,获得积分10
11秒前
脑洞疼应助sian采纳,获得10
11秒前
优秀夏天发布了新的文献求助10
11秒前
12秒前
13秒前
粥粥小弦给酸酸的求助进行了留言
15秒前
量子星尘发布了新的文献求助10
15秒前
天天快乐应助知非采纳,获得10
15秒前
搜集达人应助山水之乐采纳,获得10
16秒前
17秒前
科研通AI6应助memes采纳,获得10
18秒前
20秒前
20秒前
21秒前
顾矜应助默默善愁采纳,获得10
21秒前
杨凤婷发布了新的文献求助10
22秒前
24秒前
ybheart发布了新的文献求助10
25秒前
25秒前
28秒前
NexusExplorer应助神勇芝麻采纳,获得10
30秒前
俊逸依丝完成签到,获得积分10
31秒前
zxd发布了新的文献求助10
31秒前
不安雨南完成签到,获得积分10
31秒前
善学以致用应助HMH0223采纳,获得30
31秒前
雨后森林发布了新的文献求助10
32秒前
别斑秃了完成签到 ,获得积分10
33秒前
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5421991
求助须知:如何正确求助?哪些是违规求助? 4536983
关于积分的说明 14155650
捐赠科研通 4453570
什么是DOI,文献DOI怎么找? 2442949
邀请新用户注册赠送积分活动 1434359
关于科研通互助平台的介绍 1411431