Residual cosine similar attention and bidirectional convolution in dual-branch network for skin lesion image classification

计算机科学 残余物 卷积(计算机科学) 对偶(语法数字) 人工智能 图像(数学) 离散余弦变换 模式识别(心理学) 计算机视觉 算法 人工神经网络 文学类 艺术
作者
Aolun Li,Dezhi Zhang,Long Yu,Xiaojing Kang,Shengwei Tian,Weidong Wu,Hongfeng You,Xiangzuo Huo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108386-108386 被引量:2
标识
DOI:10.1016/j.engappai.2024.108386
摘要

Skin cancer is one of the most serious threats to human health among skin lesions. Computer-aided diagnosis methods can assist patients in identifying and detecting skin lesion types early, thereby enabling corresponding treatments. In this paper, we propose a dual-branch neural network model Conformer with Residual Cosine Similarity Attention and Bidirectional Convolutional fusion strategy, named RCSABC-Conformer. The core of this network structure comprises three parts: a Convolutional Neural Network (CNN) branch with Residual Cosine Similarity Attention (RCSA), a Transformer branch, and a Feature Couple Unit with Bidirectional Convolutional strategy (BC-FCU). The RCSA module calculates the cosine similarity value between the feature map generated by the convolutional operation and the feature map of the residual edge to assess whether their semantic information is similar. The semantic information of similar parts is weighted by exponential normalization to enhance the network's memory of similar features of the same type of skin lesion. The BC-FCU module interactively fuses local features and global representations of skin lesion images with different resolutions in the two branches. Specifically, when the global representations is integrated into local features, we introduce a new bidirectional convolution strategy to extract the feature map from both forward and backward directions, and then select the element with the smaller feature value from the two directions to fuse into local features. In this way, we can minimize the interference of the artifact features extracted by the Transformer branch on the CNN branch. In addition, taking advantage of the Transformer branch's capacity to construct global representations, our model can learn contextual semantic information of normal skin and lesion areas to enhance model robustness. We conducted experiments on three datasets, consisting of clinical and dermoscopic skin lesion images, as well as a hybrid of both. The experimental results show that RCSABC-Conformer outperforms both advanced and classical classification methods in terms of classification accuracy across all three datasets, without requiring an increase in the number of parameters and computational complexity. Compared with the baseline model, the classification accuracy of our proposed method improves by 2.40%, 5.39%, and 4.44% on the three datasets, respectively. To the best of our knowledge, this is the first study to apply an interactive fusion dual-branch network for multi-disease classification on different modalities of skin lesion databases. Code will be available at https://github.com/AlenLi817/RCSABC-Conformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lht完成签到 ,获得积分10
4秒前
Ashore完成签到 ,获得积分10
7秒前
KINGAZX完成签到 ,获得积分10
10秒前
帅气的沧海完成签到 ,获得积分10
12秒前
MZ完成签到,获得积分0
19秒前
孤独剑完成签到 ,获得积分10
22秒前
荣幸完成签到 ,获得积分10
22秒前
行走的猫完成签到,获得积分10
27秒前
高挑的金毛完成签到 ,获得积分10
34秒前
行走的猫发布了新的文献求助10
35秒前
zjh完成签到 ,获得积分10
35秒前
眯眯眼的谷冬完成签到 ,获得积分10
40秒前
MchemG应助科研通管家采纳,获得10
46秒前
烟花应助科研通管家采纳,获得200
46秒前
isedu完成签到,获得积分0
46秒前
淡然完成签到 ,获得积分10
46秒前
天选小牛马完成签到 ,获得积分10
48秒前
Kayla完成签到 ,获得积分10
49秒前
科目三应助行走的猫采纳,获得10
50秒前
gxpjzbg发布了新的文献求助30
1分钟前
loren313完成签到,获得积分0
1分钟前
gxpjzbg完成签到,获得积分10
1分钟前
Bryce完成签到 ,获得积分10
1分钟前
1分钟前
Running完成签到 ,获得积分10
1分钟前
令狐发布了新的文献求助10
1分钟前
十二十三完成签到 ,获得积分10
1分钟前
博弈完成签到 ,获得积分10
1分钟前
慧子完成签到 ,获得积分10
1分钟前
黑猫老师完成签到 ,获得积分10
1分钟前
令狐完成签到,获得积分10
1分钟前
李先生完成签到 ,获得积分10
1分钟前
君看一叶舟完成签到 ,获得积分10
1分钟前
lwroche完成签到,获得积分10
2分钟前
牛黄完成签到 ,获得积分10
2分钟前
吃掉记忆面包完成签到 ,获得积分10
2分钟前
彦成完成签到,获得积分10
2分钟前
2分钟前
iwsaml完成签到 ,获得积分10
2分钟前
chemstation完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5876292
求助须知:如何正确求助?哪些是违规求助? 6530262
关于积分的说明 15678450
捐赠科研通 4994770
什么是DOI,文献DOI怎么找? 2691945
邀请新用户注册赠送积分活动 1634102
关于科研通互助平台的介绍 1591856