Residual cosine similar attention and bidirectional convolution in dual-branch network for skin lesion image classification

计算机科学 残余物 卷积(计算机科学) 对偶(语法数字) 人工智能 图像(数学) 离散余弦变换 模式识别(心理学) 计算机视觉 算法 人工神经网络 文学类 艺术
作者
Aolun Li,Dezhi Zhang,Long Yu,Xiaojing Kang,Shengwei Tian,Weidong Wu,Hongfeng You,Xiangzuo Huo
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:133: 108386-108386 被引量:2
标识
DOI:10.1016/j.engappai.2024.108386
摘要

Skin cancer is one of the most serious threats to human health among skin lesions. Computer-aided diagnosis methods can assist patients in identifying and detecting skin lesion types early, thereby enabling corresponding treatments. In this paper, we propose a dual-branch neural network model Conformer with Residual Cosine Similarity Attention and Bidirectional Convolutional fusion strategy, named RCSABC-Conformer. The core of this network structure comprises three parts: a Convolutional Neural Network (CNN) branch with Residual Cosine Similarity Attention (RCSA), a Transformer branch, and a Feature Couple Unit with Bidirectional Convolutional strategy (BC-FCU). The RCSA module calculates the cosine similarity value between the feature map generated by the convolutional operation and the feature map of the residual edge to assess whether their semantic information is similar. The semantic information of similar parts is weighted by exponential normalization to enhance the network's memory of similar features of the same type of skin lesion. The BC-FCU module interactively fuses local features and global representations of skin lesion images with different resolutions in the two branches. Specifically, when the global representations is integrated into local features, we introduce a new bidirectional convolution strategy to extract the feature map from both forward and backward directions, and then select the element with the smaller feature value from the two directions to fuse into local features. In this way, we can minimize the interference of the artifact features extracted by the Transformer branch on the CNN branch. In addition, taking advantage of the Transformer branch's capacity to construct global representations, our model can learn contextual semantic information of normal skin and lesion areas to enhance model robustness. We conducted experiments on three datasets, consisting of clinical and dermoscopic skin lesion images, as well as a hybrid of both. The experimental results show that RCSABC-Conformer outperforms both advanced and classical classification methods in terms of classification accuracy across all three datasets, without requiring an increase in the number of parameters and computational complexity. Compared with the baseline model, the classification accuracy of our proposed method improves by 2.40%, 5.39%, and 4.44% on the three datasets, respectively. To the best of our knowledge, this is the first study to apply an interactive fusion dual-branch network for multi-disease classification on different modalities of skin lesion databases. Code will be available at https://github.com/AlenLi817/RCSABC-Conformer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
怡然的小熊猫完成签到,获得积分10
3秒前
3秒前
徐笑松完成签到 ,获得积分10
4秒前
好事发生完成签到,获得积分10
5秒前
5秒前
下雨天的树完成签到 ,获得积分10
6秒前
阳光曼冬发布了新的文献求助10
7秒前
8秒前
南风发布了新的文献求助10
8秒前
丘比特应助666采纳,获得10
9秒前
wssamuel完成签到 ,获得积分0
9秒前
汐白完成签到,获得积分10
10秒前
XD824完成签到,获得积分10
10秒前
超帅沂发布了新的文献求助10
11秒前
XD824发布了新的文献求助10
13秒前
allshestar完成签到 ,获得积分0
14秒前
14秒前
完美世界应助夏cai采纳,获得10
15秒前
泡泡发布了新的文献求助10
17秒前
自由的小丸子完成签到 ,获得积分10
17秒前
21秒前
张琳琳完成签到 ,获得积分10
21秒前
脑洞疼应助超帅沂采纳,获得10
21秒前
22秒前
uouuo完成签到 ,获得积分10
22秒前
24秒前
25秒前
科研通AI6.2应助floly采纳,获得10
25秒前
结实抽屉发布了新的文献求助10
26秒前
华仔应助林一采纳,获得10
26秒前
300发布了新的文献求助10
29秒前
坦率灵槐发布了新的文献求助10
30秒前
默默的完成签到 ,获得积分10
31秒前
超帅沂完成签到,获得积分10
33秒前
孤狐完成签到 ,获得积分10
34秒前
星辰大海应助KanmenRider采纳,获得50
34秒前
Cyrus完成签到 ,获得积分10
36秒前
37秒前
淡定的幻巧完成签到 ,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
生活在欺瞒的年代:傅树介政治斗争回忆录 260
A History of Rice in China 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5875005
求助须知:如何正确求助?哪些是违规求助? 6512747
关于积分的说明 15675773
捐赠科研通 4992774
什么是DOI,文献DOI怎么找? 2691255
邀请新用户注册赠送积分活动 1633602
关于科研通互助平台的介绍 1591217