Enhanced Generation of Reactive Oxygen Species via Piezoelectrics based on p–n Heterojunctions with Built-In Electric Field

材料科学 异质结 电场 光催化 压电 光电子学 极化(电化学) 纳米技术 化学工程 复合材料 物理化学 催化作用 物理 工程类 有机化学 化学 量子力学
作者
Xiaofeng Zhou,Bo Shen,Jiwei Zhai,Jiayin Yuan,Niklas Hedin
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
卷期号:16 (16): 20472-20484 被引量:4
标识
DOI:10.1021/acsami.4c01283
摘要

Tuning the charge transfer processes through a built-in electric field is an effective way to accelerate the dynamics of electro- and photocatalytic reactions. However, the coupling of the built-in electric field of p-n heterojunctions and the microstrain-induced polarization on the impact of piezocatalysis has not been fully explored. Herein, we demonstrate the role of the built-in electric field of p-type BiOI/n-type BiVO4 heterojunctions in enhancing their piezocatalytic behaviors. The highly crystalline p-n heterojunction is synthesized by using a coprecipitation method under ambient aqueous conditions. Under ultrasonic irradiation in water exposed to air, the p-n heterojunctions exhibit significantly higher production rates of reactive species (·OH, ·O2-, and 1O2) as compared to isolated BiVO4 and BiOI. Also, the piezocatalytic rate of H2O2 production with the BiOI/BiVO4 heterojunction reaches 480 μmol g-1 h-1, which is 1.6- and 12-fold higher than those of BiVO4 and BiOI, respectively. Furthermore, the p-n heterojunction maintains a highly stable H2O2 production rate under ultrasonic irradiation for up to 5 h. The results from the experiments and equation-driven simulations of the strain and piezoelectric potential distributions indicate that the piezocatalytic reactivity of the p-n heterojunction resulted from the polarization intensity induced by periodic ultrasound, which is enhanced by the built-in electric field of the p-n heterojunctions. This study provides new insights into the design of piezocatalysts and opens up new prospects for applications in medicine, environmental remediation, and sonochemical sensors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TianY天翊发布了新的文献求助10
1秒前
2秒前
111完成签到,获得积分10
2秒前
欢乐多完成签到,获得积分10
2秒前
小蒋发布了新的文献求助10
3秒前
4秒前
4秒前
Olliahhh完成签到,获得积分10
5秒前
5秒前
开放的秋玲完成签到,获得积分10
6秒前
略略略发布了新的文献求助30
6秒前
美好斓发布了新的文献求助10
7秒前
7秒前
7秒前
暖暖发布了新的文献求助10
7秒前
Jasper应助Nthorn_rone采纳,获得30
8秒前
果粒橙子完成签到 ,获得积分10
8秒前
万能图书馆应助子乔采纳,获得10
9秒前
11秒前
11秒前
11秒前
12秒前
慈祥的梦露完成签到,获得积分10
12秒前
浅香千雪发布了新的文献求助10
12秒前
12秒前
14秒前
14秒前
hhh完成签到,获得积分10
14秒前
14秒前
14秒前
量子星尘发布了新的文献求助50
14秒前
仙宝头发布了新的文献求助10
15秒前
刻苦秋烟发布了新的文献求助10
15秒前
16秒前
16秒前
苹果蜗牛完成签到 ,获得积分10
17秒前
jbzmm发布了新的文献求助50
17秒前
17秒前
科研通AI6.1应助hhh采纳,获得10
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
Population genetics 2nd edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5805545
求助须知:如何正确求助?哪些是违规求助? 5850465
关于积分的说明 15516669
捐赠科研通 4930822
什么是DOI,文献DOI怎么找? 2654773
邀请新用户注册赠送积分活动 1601575
关于科研通互助平台的介绍 1556622