Towards Knowledge-Aware and Deep Reinforced Cross-Domain Recommendation Over Collaborative Knowledge Graph

计算机科学 领域知识 知识图 基于知识的系统 开放式知识库连接 图形 知识抽取 知识库 情报检索 数据科学 人工智能 理论计算机科学 知识管理 个人知识管理 组织学习
作者
Yakun Li,Lei Hou,Juanzi Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:36 (11): 7171-7187 被引量:3
标识
DOI:10.1109/tkde.2024.3391268
摘要

Cross-domain recommendations (CDRs), which can leverage the relatively abundant information from a richer domain to improve the recommendation performance in a sparser domain, have attracted great attention due to their flexible recommendation strategies. Nevertheless, existing CDR approaches still suffer from severe data sparsity and low semantic sampling efficiency issues, and hardly employ existing reinforcement learning models to improve cross-domain recommendation accuracy. To this end, we propose a new Knowledge-aware and Deep Reinforced Cross-Domain Recommendation framework over Collaborative Knowledge Graph (KRCDR). Specifically, we formalize the cross-domain recommendation task as a Markov Decision Process, and propose a knowledge-aware dual state representation approach to enhance state representations within and across domains for target users by leveraging knowledge graph information. Then, to improve the training performance, we propose a Constrained Self-supervised Actor-Critic network (CSAC) model, in which a constrained neighbor pruning strategy is devised to narrow the exploration space and improve the sampling efficiency, and the CSAC is developed to improve the recommendation policy. Additionally, in our proposed CSAC model, a self-supervised output layer within domains is used as an actor network to generate the recommendation policy, and a Q-learning output layer across domains is used as a critic network to feedback reward signals. Finally, based on the KRCDR approach, we design a new algorithm to assist in generating cross-domain recommendation results. Extensive experiments have been conducted on several real-world datasets, which demonstrate the superiority of our proposed approach compared with state-of-the-art baseline methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃发布了新的文献求助10
1秒前
任风完成签到,获得积分10
1秒前
tangyi888应助科研通管家采纳,获得20
2秒前
2秒前
佳琳有乐完成签到,获得积分10
2秒前
叫锅盔的猫完成签到 ,获得积分10
2秒前
顾矜应助科研通管家采纳,获得10
2秒前
乐观小之应助科研通管家采纳,获得10
2秒前
2秒前
标致导师应助科研通管家采纳,获得10
2秒前
tangyi888应助科研通管家采纳,获得20
2秒前
2秒前
王讯完成签到,获得积分10
2秒前
2秒前
顾矜应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
乐观小之应助科研通管家采纳,获得10
3秒前
3秒前
邓佳鑫Alan应助科研通管家采纳,获得10
3秒前
852应助XianshengJin采纳,获得10
3秒前
3秒前
Owen应助科研通管家采纳,获得10
3秒前
邓佳鑫Alan应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
javer应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
tangyi888应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
4秒前
春儿完成签到,获得积分10
4秒前
5秒前
jeronimo发布了新的文献求助10
5秒前
yosh完成签到,获得积分10
5秒前
liu完成签到 ,获得积分10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 2000
Electron Energy Loss Spectroscopy 1500
Processing of reusable surgical textiles for use in health care facilities 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5803216
求助须知:如何正确求助?哪些是违规求助? 5835240
关于积分的说明 15509112
捐赠科研通 4928894
什么是DOI,文献DOI怎么找? 2653562
邀请新用户注册赠送积分活动 1600541
关于科研通互助平台的介绍 1555437