CL-CaGAN: Capsule Differential Adversarial Continual Learning for Cross-Domain Hyperspectral Anomaly Detection

高光谱成像 异常检测 对抗制 人工智能 领域(数学分析) 计算机科学 模式识别(心理学) 遥感 地质学 数学 数学分析
作者
Jianing Wang,Siying Guo,Hua Zheng,Runhu Huang,Jinyu Hu,Maoguo Gong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:8
标识
DOI:10.1109/tgrs.2024.3388426
摘要

Anomaly detection (AD) has attracted remarkable attention in hyperspectral image (HSI) processing fields, most existing deep learning (DL) based algorithms indicate dramatic potential for detecting anomaly samples through specific training process under current scenario. However, the limited prior information and the catastrophic forgetting problem indicate crucial challenges for existing DL structure in open scenarios cross-domain detection. In order to improve the detection performance, a novel capsule differential adversarial continual learning framework (CL-CaGAN) is proposed to elevate the cross-scenario learning performance for facilitating the real application of DL-based structure in hyperspectral anomaly detection (HAD) task. First, a modified capsule structure with adversarial learning network is constructed to estimate the background distribution for surmounting the deficiency of prior information. To mitigate the catastrophic forgetting phenomenon, clustering-based sample replay strategy and a designed extra self-distillation regularization are integrated for merging the history and future knowledge in continual AD task, while the discriminative learning ability from previous detection scenario to current scenario are retained by the elaborately designed structure with continual learning strategy. In addition, the differentiable enhancement is enforced to augment the generation performance of the training data for further stabilizing the training process with better convergence, this procedure further efficiently consolidates the reconstruction ability of background samples. To verify the effectiveness of our proposed CL-CaGAN, we conduct experiments on several real HSIs, the results indicate that the proposed CL-CaGAN demonstrates higher detection performance and continuous learning capacity for mitigating the catastrophic forgetting under cross-domain scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yang发布了新的文献求助10
刚刚
酷酷巧蟹发布了新的文献求助10
1秒前
小葵花完成签到 ,获得积分10
1秒前
DR_Su完成签到,获得积分10
1秒前
桐桐应助阔达的水壶采纳,获得10
2秒前
希望天下0贩的0应助lytelope采纳,获得10
2秒前
盆栽栽发布了新的文献求助10
2秒前
九次方完成签到,获得积分10
3秒前
kkk关注了科研通微信公众号
5秒前
hyd1640完成签到,获得积分10
5秒前
5秒前
DR_Su发布了新的文献求助20
6秒前
7秒前
7秒前
nffl完成签到 ,获得积分10
8秒前
JamesPei应助wise111采纳,获得10
8秒前
9秒前
11秒前
CSX完成签到 ,获得积分10
11秒前
wyx发布了新的文献求助10
13秒前
13秒前
内向冷梅发布了新的文献求助10
14秒前
李没事儿吧完成签到,获得积分10
14秒前
14秒前
Hello应助ssssssssci采纳,获得10
14秒前
15秒前
16秒前
16秒前
科目三应助Jiali采纳,获得10
17秒前
18秒前
高大的画板应助娜娜采纳,获得10
18秒前
mhuim发布了新的文献求助10
18秒前
20秒前
雨下整夜发布了新的文献求助10
21秒前
cc2004bj应助ZZZ采纳,获得10
21秒前
裴浩男发布了新的文献求助20
22秒前
22秒前
高大的画板应助汐白采纳,获得10
23秒前
23秒前
victor完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Fare-free public transit service: Experience from Gaoping city of China 1000
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
《The Emergency Nursing High-Yield Guide》 (或简称为 Emergency Nursing High-Yield Essentials) 500
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5879324
求助须知:如何正确求助?哪些是违规求助? 6561966
关于积分的说明 15687202
捐赠科研通 4998866
什么是DOI,文献DOI怎么找? 2693559
邀请新用户注册赠送积分活动 1635515
关于科研通互助平台的介绍 1593017