Deep-PK: deep learning for small molecule pharmacokinetic and toxicity prediction

可解释性 药代动力学 深度学习 药物发现 广告 计算生物学 计算机科学 小分子 人工智能 机器学习 生物 药理学 生物信息学 生物化学
作者
Yoochan Myung,Alex G. C. de Sá,David B. Ascher
出处
期刊:Nucleic Acids Research [Oxford University Press]
卷期号:52 (W1): W469-W475 被引量:51
标识
DOI:10.1093/nar/gkae254
摘要

Abstract Evaluating pharmacokinetic properties of small molecules is considered a key feature in most drug development and high-throughput screening processes. Generally, pharmacokinetics, which represent the fate of drugs in the human body, are described from four perspectives: absorption, distribution, metabolism and excretion—all of which are closely related to a fifth perspective, toxicity (ADMET). Since obtaining ADMET data from in vitro, in vivo or pre-clinical stages is time consuming and expensive, many efforts have been made to predict ADMET properties via computational approaches. However, the majority of available methods are limited in their ability to provide pharmacokinetics and toxicity for diverse targets, ensure good overall accuracy, and offer ease of use, interpretability and extensibility for further optimizations. Here, we introduce Deep-PK, a deep learning-based pharmacokinetic and toxicity prediction, analysis and optimization platform. We applied graph neural networks and graph-based signatures as a graph-level feature to yield the best predictive performance across 73 endpoints, including 64 ADMET and 9 general properties. With these powerful models, Deep-PK supports molecular optimization and interpretation, aiding users in optimizing and understanding pharmacokinetics and toxicity for given input molecules. The Deep-PK is freely available at https://biosig.lab.uq.edu.au/deeppk/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莲枳榴莲完成签到 ,获得积分10
1秒前
Xilli完成签到 ,获得积分10
2秒前
半斤完成签到 ,获得积分10
3秒前
急急急寄完成签到,获得积分10
4秒前
cx发布了新的文献求助10
5秒前
7秒前
7秒前
香氛发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
AA完成签到 ,获得积分10
14秒前
科研通AI6.2应助cx采纳,获得10
14秒前
bkagyin应助荔枝采纳,获得10
15秒前
故意的书本完成签到 ,获得积分10
17秒前
20秒前
lizishu应助科研通管家采纳,获得10
23秒前
听雨应助科研通管家采纳,获得10
23秒前
Alex应助科研通管家采纳,获得20
23秒前
lizishu应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
听雨应助科研通管家采纳,获得10
23秒前
lizishu应助科研通管家采纳,获得10
23秒前
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
lizishu应助科研通管家采纳,获得10
23秒前
英俊的铭应助科研通管家采纳,获得10
23秒前
大个应助科研通管家采纳,获得10
23秒前
大模型应助科研通管家采纳,获得10
23秒前
斯文败类应助科研通管家采纳,获得10
23秒前
bkagyin应助科研通管家采纳,获得10
23秒前
Akim应助科研通管家采纳,获得10
23秒前
李健应助科研通管家采纳,获得10
23秒前
28秒前
29秒前
32秒前
36秒前
科研通AI6.2应助哒哒哒采纳,获得10
37秒前
香氛完成签到,获得积分10
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Psychological Well-being The Complexities of Mental and Emotional Health 500
T/SNFSOC 0002—2025 独居石精矿碱法冶炼工艺技术标准 300
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5857093
求助须知:如何正确求助?哪些是违规求助? 6326967
关于积分的说明 15635686
捐赠科研通 4971430
什么是DOI,文献DOI怎么找? 2681441
邀请新用户注册赠送积分活动 1625405
关于科研通互助平台的介绍 1582402