清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Drone-TOOD: A Lightweight Task-Aligned Object Detection Algorithm for Vehicle Detection in UAV Images

无人机 目标检测 计算机科学 计算机视觉 任务(项目管理) 人工智能 模式识别(心理学) 工程类 遗传学 系统工程 生物
作者
K.‐S. Ou,Chaojun Dong,Xiankun Liu,Yikui Zhai,Ye Li,Wanxia Huang,Wenkang Qiu,Yizhi Wang,Chengxuan Wang
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:12: 41999-42016 被引量:15
标识
DOI:10.1109/access.2024.3378248
摘要

Vehicle object detection using UAV images is a crucial undertaking in urban traffic management and the advancement of autonomous driving technologies. Conventional networks fail to achieve accuary in detecting vehicle objects from a drone’s perspective due to the significant variations in the size of the target items, unequal distribution of their positions in the image, and image degradation induced by the drone’s movement.In order to surmount this challenge, this research suggests an enhanced TOOD object detection model named Drone-TOOD. The first proposal is to create a lightweight network skeleton called CSPRegNet by merging CSPblock with Regblock. Secondly, we incorporate Regblock into CSPPAFPN to enhance CSPRegPAFPN and incorporate EVCblock at the upsampling location of deep features to capture corner area details and minimize the degradation of feature information. In addition, a efficient task decomposition attention module is also proposed to enhance the interaction ability of positioning and classification tasks. This task decomposition module can highlight the characteristics of a specific task while retaining the characteristics of another task, thereby improving detection capabilities. Experiments conducted on the Drone Vision Challenge Benchmark (VisDrone) demonstrate that the enhanced model can obtain superior performance compared to TOOD. The average precision (mAP) achieved by our approach is 64%, surpassing TOOD by 7.9%. The frames per second (FPS) stayed constant at 27.2. Drone-TOOD demonstrates superior performance compared to other lightweight models on the VisDrone-2021 dataset. In order to demonstrate the robustness of our approach, we additionally performed ablation experiments and conducted tests on the UAV Detection and Tracking Dataset (UAVDT), resulting in an achieved mean average precision (mAP) of 64.6%. Furthermore, Drone-TOOD possesses a total of parameter approximately 21.7 M.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wodetaiyangLLL完成签到 ,获得积分10
1秒前
10秒前
friend516完成签到 ,获得积分10
33秒前
40秒前
淡定自中发布了新的文献求助10
46秒前
46秒前
科研通AI2S应助科研通管家采纳,获得10
48秒前
1分钟前
1分钟前
可夫司机完成签到 ,获得积分10
1分钟前
CadoreK完成签到 ,获得积分10
1分钟前
1分钟前
2分钟前
2分钟前
linqitc发布了新的文献求助10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
ffff完成签到 ,获得积分10
2分钟前
碗碗豆喵完成签到 ,获得积分10
2分钟前
2分钟前
斯文败类应助科研通管家采纳,获得10
2分钟前
2分钟前
lph完成签到 ,获得积分10
2分钟前
DJ_Tokyo完成签到,获得积分0
2分钟前
yaya完成签到 ,获得积分10
3分钟前
3分钟前
zhangsan完成签到,获得积分10
3分钟前
靓丽奇迹完成签到 ,获得积分10
4分钟前
4分钟前
和风完成签到 ,获得积分10
4分钟前
4分钟前
科研通AI6应助舒适的大有采纳,获得10
4分钟前
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
BowieHuang应助科研通管家采纳,获得10
4分钟前
CodeCraft应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
4分钟前
1437594843完成签到 ,获得积分10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nonlinear Problems of Elasticity 3000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 1000
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5534541
求助须知:如何正确求助?哪些是违规求助? 4622572
关于积分的说明 14582648
捐赠科研通 4562692
什么是DOI,文献DOI怎么找? 2500318
邀请新用户注册赠送积分活动 1479848
关于科研通互助平台的介绍 1451059