Insights from high-fidelity modeling of industrial rotary bell atomization

汽车工业 涂层 机械工程 计算机科学 稳健性(进化) 计算流体力学 高效能源利用 材料科学 工艺工程 纳米技术 机械 物理 航空航天工程 工程类 化学 基因 电气工程 生物化学
作者
Robert I. Saye,James A. Sethian,Brandon Petrouskie,Aaron Zatorsky,Xinyu Lü,Reza M. Rock
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:120 (4) 被引量:4
标识
DOI:10.1073/pnas.2216709120
摘要

The global automotive industry sprayed over 2.6 billion liters of paint in 2018, much of which through electrostatic rotary bell atomization, a highly complex process involving the fluid mechanics of rapidly rotating thin films tearing apart into micrometer-thin filaments and droplets. Coating operations account for 65% of the energy usage in a typical automotive assembly plant, representing 10,000s of gigawatt-hours each year in the United States alone. Optimization of these processes would allow for improved robustness, reduced material waste, increased throughput, and significantly reduced energy usage. Here, we introduce a high-fidelity mathematical and algorithmic framework to analyze rotary bell atomization dynamics at industrially relevant conditions. Our approach couples laboratory experiment with the development of robust non-Newtonian fluid models; devises high-order accurate numerical methods to compute the coupled bell, paint, and gas dynamics; and efficiently exploits high-performance supercomputing architectures. These advances have yielded insight into key dynamics, including i) parametric trends in film, sheeting, and filament characteristics as a function of fluid rheology, delivery rates, and bell speed; ii) the impact of nonuniform film thicknesses on atomization performance; and iii) an understanding of spray composition via primary and secondary atomization. These findings result in coating design principles that are poised to improve energy- and cost-efficiency in a wide array of industrial and manufacturing settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
每天都在找完成签到,获得积分10
刚刚
量子星尘发布了新的文献求助10
刚刚
curtisness应助wxnice采纳,获得10
刚刚
科研通AI2S应助王撑撑采纳,获得10
1秒前
Liziqi823完成签到,获得积分10
1秒前
哭泣的缘郡完成签到 ,获得积分10
3秒前
77完成签到,获得积分10
4秒前
kyawawa发布了新的文献求助10
7秒前
唐唐完成签到,获得积分10
7秒前
gao完成签到 ,获得积分10
12秒前
二巨头完成签到,获得积分10
12秒前
vicky完成签到 ,获得积分10
13秒前
helpmepaper完成签到,获得积分10
16秒前
20秒前
充电宝应助科研通管家采纳,获得10
20秒前
少十七应助科研通管家采纳,获得10
20秒前
小丁同学应助科研通管家采纳,获得10
20秒前
冰魂应助科研通管家采纳,获得10
20秒前
小丁同学应助科研通管家采纳,获得10
21秒前
好困应助科研通管家采纳,获得10
21秒前
小丁同学应助科研通管家采纳,获得10
21秒前
21秒前
好困应助科研通管家采纳,获得10
21秒前
21秒前
Singularity应助科研通管家采纳,获得10
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
风清扬应助科研通管家采纳,获得10
21秒前
Singularity应助科研通管家采纳,获得10
22秒前
22秒前
深情安青应助科研通管家采纳,获得10
22秒前
小丁同学应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
风清扬应助科研通管家采纳,获得10
22秒前
小丁同学应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
Singularity应助科研通管家采纳,获得10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
科研通AI5应助科研通管家采纳,获得10
23秒前
小丁同学应助科研通管家采纳,获得10
23秒前
dm应助科研通管家采纳,获得10
23秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
Synthesis of 21-Thioalkanoic Acids of Corticosteroids 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Applied Survey Data Analysis (第三版, 2025) 850
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3883895
求助须知:如何正确求助?哪些是违规求助? 3426198
关于积分的说明 10747380
捐赠科研通 3151045
什么是DOI,文献DOI怎么找? 1739209
邀请新用户注册赠送积分活动 839633
科研通“疑难数据库(出版商)”最低求助积分说明 784734