DETECTION OF AUTISM SPECTRUM DISORDER BY FEATURE EXTRACTION OF EEG SIGNALS AND MACHINE LEARNING CLASSIFIERS

自闭症谱系障碍 模式识别(心理学) 支持向量机 人工智能 脑电图 自回归模型 小波 心理学 近似熵 分类 特征提取 计算机科学 语音识别 机器学习 自闭症 统计 数学 发展心理学 神经科学
作者
Qaysar Mohi ud Din,A. K. Jayanthy
出处
期刊:Biomedical Engineering: Applications, Basis and Communications [National Taiwan University]
卷期号:35 (01) 被引量:5
标识
DOI:10.4015/s1016237222500466
摘要

Autism Spectrum Disorder (ASD), a neurodevelopmental disorder, impacts the subject’s social communication and interaction and the subjects exhibit restricted and repetitive behaviors. Subjects with ASD may need assistance throughout their life, depending on the severity. Early diagnosis of ASD is therefore critical for early intervention. ASD is diagnosed clinically based on behavioral assessments of the subjects, which results in delayed diagnosis, since the typical ASD traits due to aberrant brain development take time to develop. Neurological disorders associated with aberrant brain electrical activity have been detected by analyzing Electroencephalogram (EEG) signal patterns. In this study, we used features extracted from EEG brain waves to categorize ASD and normal subjects using Machine Learning (ML) classifiers. Autoregressive (AR) coefficients, Shannon entropy, Multifractal wavelet leader estimates, Multiscale wavelet variance and Discrete Fourier Transform (DFT) coefficients were extracted from EEG brain waves of ASD and normal subjects. Support Vector Machine (SVM), Decision Tree (DT), Logistic Regression (LR), k-Nearest Neighbor (k-NN) and Feed-forward Neural Network (FNN) were utilized as classification algorithms to categorize the ASD subjects and the control subjects. An accuracy of 90% was achieved by k-NN algorithm using AR features, Shannon entropy, Multifractal wavelet leader estimates and Multiscale wavelet variance estimates in ASD categorization. An accuracy of 93% was achieved by k-NN using the DFT features. The findings of this study indicate that features extracted from EEG are sufficient enough for categorization of ASD subjects and the control subjects.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王淇发布了新的文献求助10
1秒前
雪霓裳发布了新的文献求助10
1秒前
所所应助Liuxinyiliu采纳,获得10
2秒前
2秒前
田様应助沈three采纳,获得10
3秒前
3秒前
3秒前
3秒前
领导范儿应助真实的香岚采纳,获得10
4秒前
hml123发布了新的文献求助10
6秒前
Ciyuan完成签到,获得积分10
6秒前
打打应助pigeon采纳,获得10
7秒前
金金完成签到,获得积分10
7秒前
奶油桃子应助小姚霏采纳,获得10
7秒前
开放鸿涛发布了新的文献求助10
8秒前
Yolo发布了新的文献求助10
9秒前
tender完成签到,获得积分10
10秒前
我是老大应助RRRRR1采纳,获得10
10秒前
天草诺完成签到,获得积分10
11秒前
shiyue完成签到,获得积分10
11秒前
曾经冰露发布了新的文献求助10
12秒前
在水一方应助开放鸿涛采纳,获得10
14秒前
rico发布了新的文献求助30
16秒前
16秒前
小马甲应助美丽的智宸采纳,获得10
16秒前
2024dsb完成签到 ,获得积分10
17秒前
19秒前
沈three发布了新的文献求助10
19秒前
24秒前
25秒前
马特发布了新的文献求助30
25秒前
26秒前
26秒前
26秒前
26秒前
26秒前
26秒前
26秒前
情怀应助科研通管家采纳,获得10
27秒前
ZJHYNL应助科研通管家采纳,获得50
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
Psychology and Work Today 1000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5830988
求助须知:如何正确求助?哪些是违规求助? 6060458
关于积分的说明 15580763
捐赠科研通 4950358
什么是DOI,文献DOI怎么找? 2667318
邀请新用户注册赠送积分活动 1612922
关于科研通互助平台的介绍 1568046