已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Quantification through deep learning of sky view factor and greenery on urban streets during hot and cool seasons

热舒适性 环境科学 地理 城市热岛 城市环境 城市规划 热感觉 计算机科学 气象学 环境规划 土木工程 工程类
作者
Yen-Cheng Chiang,Ho-Hsun Liu,Dongying Li,Li-Chih Ho
出处
期刊:Landscape and Urban Planning [Elsevier]
卷期号:232: 104679-104679 被引量:15
标识
DOI:10.1016/j.landurbplan.2022.104679
摘要

The urban heat island effect has gained attention worldwide. Built environment characteristics such as sky view factor (SVF) and green view index (GVI) can affect urban thermal environments and pedestrians’ thermal comfort. With recent technological advances, Google Street View (GSV) can be used to rapidly obtain panoramic street-view images with high reliability, enabling convenient and low-cost environmental assessment of urban settings. In addition, deep learning technology for quantifying the characteristics of urban environments has advanced considerably. This study sought to (1) determine the consistency between deep learning and manual classification of urban environment characteristics and (2) investigate the effects of street-level SVF and GVI on thermal comfort, especially the differences in their effects during hot and cool seasons. The study was conducted in the West District of Taichung City, and GSV was used to capture images from which SVF and GVI were calculated. A total of 50 sample locations were selected for an onsite questionnaire and thermal comfort was measured to determine the effects of SVF and GVI. The results indicated deep learning and manual classifications of SVF and GVI to be highly correlated. With regard to effects, SVF had a significant positive effect on physiological equivalent temperature and thermal sensation votes. GVI also had a significant positive effect on physiological equivalent temperature, but no effect on thermal sensation votes. Thus, reducing SVF and implementing greening projects may improve thermal comfort of pedestrians on the streets. These results offer implications for future urban planning and large-scale urban thermal environment assessments.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卡思完成签到,获得积分10
3秒前
6秒前
在水一方应助科研通管家采纳,获得10
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
在水一方应助科研通管家采纳,获得10
8秒前
8秒前
小马甲应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
今后应助科研通管家采纳,获得10
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
bkagyin应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
无花果应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得10
8秒前
白若宇发布了新的文献求助10
11秒前
12秒前
qc发布了新的文献求助10
14秒前
芋头发布了新的文献求助20
15秒前
15秒前
白若宇完成签到,获得积分10
23秒前
张元东完成签到 ,获得积分10
25秒前
老王爱学习完成签到,获得积分10
27秒前
负责柚子完成签到 ,获得积分10
31秒前
31秒前
今后应助芝士雪豹采纳,获得10
35秒前
浮华发布了新的文献求助10
36秒前
qc完成签到,获得积分10
37秒前
46秒前
云槿完成签到 ,获得积分10
46秒前
小菜完成签到,获得积分10
47秒前
51秒前
yanzw发布了新的文献求助10
53秒前
单纯的石头完成签到 ,获得积分10
54秒前
舒心幻竹完成签到 ,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Psychology and Work Today 1400
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
Signals, Systems, and Signal Processing 880
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5839512
求助须知:如何正确求助?哪些是违规求助? 6140855
关于积分的说明 15603706
捐赠科研通 4957382
什么是DOI,文献DOI怎么找? 2672246
邀请新用户注册赠送积分活动 1617304
关于科研通互助平台的介绍 1572300