图形
计算机科学
嵌入
理论(学习稳定性)
油藏计算
一般化
回声状态网络
财产(哲学)
趋同(经济学)
理论计算机科学
数学
人工神经网络
人工智能
循环神经网络
机器学习
认识论
经济
经济增长
数学分析
哲学
作者
Domenico Tortorella,Claudio Gallicchio,Alessio Micheli
标识
DOI:10.1109/ijcnn55064.2022.9892102
摘要
Graph echo state networks (GESN) are a class of reservoir computing models for the efficient and effective processing of graphs. They compute graph embeddings by the convergence to a fixed point of a dynamical system, randomly initialized according to a generalization of the echo state property, called the graph embedding stability (GES) property. In this paper, we prove new and more accurate bounds for necessary and sufficient GES conditions. Experiments demonstrate how these bounds allow an easier parameter selection and better quality reservoirs.
科研通智能强力驱动
Strongly Powered by AbleSci AI