清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Robust Dynamic Bus Control: a Distributional Multi-Agent Reinforcement Learning Approach

强化学习 计算机科学 车辆动力学 控制(管理) 工程类 人工智能 汽车工程
作者
Jiawei Wang,Lijun Sun
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:24 (4): 4075-4088 被引量:14
标识
DOI:10.1109/tits.2022.3229527
摘要

Bus system is a critical component of sustainable urban transportation. However, the operation of a bus fleet is unstable in nature, and bus bunching has become a common phenomenon that undermines the efficiency and reliability of bus systems. Recently research has demonstrated the promising application of multi-agent reinforcement learning (MARL) to achieve efficient vehicle holding control to avoid bus bunching. However, existing studies essentially overlook the robustness issue resulting from various events, perturbations and anomalies in a transit system, which is of utmost importance when transferring the models for real-world deployment/application. In this study, we integrate implicit quantile network and meta-learning to develop a distributional MARL framework -- IQNC-M -- to learn continuous control. The proposed IQNC-M framework achieves efficient and reliable control decisions through better handling various uncertainties/events in real-time transit operations. Specifically, we introduce an interpretable meta-learning module to incorporate global information into the distributional MARL framework, which is an effective solution to circumvent the credit assignment issue in the transit system. In addition, we design a specific learning procedure to train each agent within the framework to pursue a robust control policy. We develop simulation environments based on real-world bus services and passenger demand data and evaluate the proposed framework against both traditional holding control models and state-of-the-art MARL models. Our results show that the proposed IQNC-M framework can effectively handle the various extreme events, such as traffic state perturbations, service interruptions, and demand surges, thus improving both efficiency and reliability of the system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
5秒前
7秒前
tfq200发布了新的文献求助10
12秒前
研友_LN25rL完成签到,获得积分10
18秒前
贪玩丸子完成签到 ,获得积分10
19秒前
huiluowork完成签到 ,获得积分10
22秒前
拼搏的寒凝完成签到 ,获得积分10
34秒前
不知道叫个啥完成签到 ,获得积分10
36秒前
tszjw168完成签到 ,获得积分0
53秒前
惊鸿H完成签到 ,获得积分10
57秒前
kd1412完成签到 ,获得积分10
1分钟前
蔚欢完成签到 ,获得积分10
1分钟前
火星上的雨柏完成签到 ,获得积分10
1分钟前
我很厉害的1q完成签到,获得积分10
1分钟前
游泳池完成签到,获得积分10
1分钟前
爱听歌盼海完成签到 ,获得积分10
1分钟前
qianzhihe2完成签到,获得积分10
1分钟前
gwbk完成签到,获得积分10
2分钟前
时尚白凡完成签到 ,获得积分10
2分钟前
liangziwei完成签到,获得积分20
2分钟前
Jasperlee完成签到 ,获得积分10
2分钟前
雪花完成签到 ,获得积分10
2分钟前
2分钟前
level完成签到 ,获得积分10
3分钟前
SharonDu完成签到 ,获得积分10
3分钟前
3分钟前
科科通通完成签到,获得积分10
3分钟前
ywzwszl完成签到,获得积分10
3分钟前
幸福的羿完成签到 ,获得积分10
3分钟前
无辜的黄豆完成签到 ,获得积分10
4分钟前
冰蓝色的忧伤完成签到,获得积分10
4分钟前
Wmmmmm发布了新的文献求助10
4分钟前
lingling完成签到 ,获得积分10
4分钟前
安然完成签到 ,获得积分10
4分钟前
Wmmmmm完成签到,获得积分10
4分钟前
漂亮的秋天完成签到 ,获得积分10
4分钟前
无心的天真完成签到 ,获得积分10
4分钟前
zxq完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
Operational Bulk Evaporation Duct Model for MORIAH Version 1.2 1200
Signals, Systems, and Signal Processing 880
Yangtze Reminiscences. Some Notes And Recollections Of Service With The China Navigation Company Ltd., 1925-1939 800
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Discrete-Time Signals and Systems 510
Industrial Organic Chemistry, 5th Edition 400
Multiple Regression and Beyond An Introduction to Multiple Regression and Structural Equation Modeling 4th Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5845802
求助须知:如何正确求助?哪些是违规求助? 6208037
关于积分的说明 15616806
捐赠科研通 4962505
什么是DOI,文献DOI怎么找? 2675562
邀请新用户注册赠送积分活动 1620274
关于科研通互助平台的介绍 1575639