Automated tree ring detection of common Indiana hardwood species through deep learning: Introducing a new dataset of annotated images

棱锥(几何) 计算机科学 深度学习 人工智能 树(集合论) 特征(语言学) 过程(计算) 注释 模式识别(心理学) 机器学习 数学 数学分析 语言学 哲学 几何学 操作系统
作者
Fanyou Wu,Yunmei Huang,Bedřich Beneš,Charles C. Warner,Rado Gazo
出处
期刊:Information Processing in Agriculture [Elsevier]
被引量:2
标识
DOI:10.1016/j.inpa.2023.10.002
摘要

Tree-ring dating enables gathering necessary knowledge about trees, and it is essential in many areas, including forest management and the timber industry. Tree-ring dating can be conducted on either wood's clean cross-sections or tree trunks' rough end cross-sections. However, the measurement process is still time-consuming and frequently requires experts who use special devices, such as stereoscopes. Modern approaches based on image processing using deep learning have been successfully applied in many areas, and they can succeed in recognizing tree rings. While supervised deep learning-based methods often produce excellent results, they also depend on extensive datasets of tediously annotated data. To our knowledge, there are only a few publicly available ring image datasets with annotations. We introduce a new carefully captured dataset of images of hardwood species automatically annotated for tree ring detection. We capture each wood cookie twice, once in the rough form, similar to industrial settings, and then after careful cleaning, that reveals all growth rings. We carefully overlap the images and use them for an automatic ring annotation in the rough data. We then use the Feature Pyramid Network with Resnet encoder that obtains an overall pixel-level area under the curve score of 85.72% and ring level F1 score of 0.7348. The data and code are available at https://github.com/wufanyou/growth-ring-detection.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
2秒前
3秒前
文森特的向日葵完成签到,获得积分10
3秒前
eric888应助StarRiver采纳,获得30
3秒前
繁荣的又夏完成签到,获得积分10
4秒前
parpate发布了新的文献求助10
4秒前
4秒前
4秒前
云蓝完成签到 ,获得积分10
5秒前
Ava应助双子玖兰莒采纳,获得10
5秒前
6秒前
uppercrusteve发布了新的文献求助10
7秒前
等待吐司完成签到,获得积分10
7秒前
7秒前
CodeCraft应助踏实芫采纳,获得10
7秒前
7秒前
赘婿应助萤火虫采纳,获得10
8秒前
传奇3应助研友_8DAv0L采纳,获得10
8秒前
allezallez完成签到,获得积分10
10秒前
10秒前
张张发布了新的文献求助10
10秒前
赘婿应助ncjdoi采纳,获得10
10秒前
tillson发布了新的文献求助10
11秒前
张子豪发布了新的文献求助10
11秒前
12秒前
第一军团没有秘密完成签到,获得积分10
12秒前
Dreamer发布了新的文献求助10
13秒前
dgdsnfds发布了新的文献求助10
15秒前
17秒前
17秒前
蟹蟹发布了新的文献求助10
17秒前
浮游应助不想说采纳,获得10
18秒前
顾矜应助负责流口水采纳,获得10
18秒前
历了浮沉完成签到 ,获得积分10
20秒前
20秒前
兜兜发布了新的文献求助10
20秒前
20秒前
吴彦祖应助科研通管家采纳,获得10
21秒前
科研通AI6应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5497419
求助须知:如何正确求助?哪些是违规求助? 4594913
关于积分的说明 14447079
捐赠科研通 4527566
什么是DOI,文献DOI怎么找? 2480940
邀请新用户注册赠送积分活动 1465311
关于科研通互助平台的介绍 1437920