Retired Battery Screening Based on Markov Transition Field and Swin Transformer

变压器 马尔可夫链 计算机科学 电压 稳健性(进化) 人工智能 模式识别(心理学) 工程类 机器学习 电气工程 生物化学 化学 基因
作者
Mingqiang Lin,Jian Wu,Jianqing Zou,Jinhao Meng,Wei Wang,Ji Wu
出处
期刊:IEEE Transactions on Transportation Electrification 卷期号:10 (2): 4217-4227 被引量:7
标识
DOI:10.1109/tte.2023.3306393
摘要

With the widespread popularity of electric vehicles, the secondary utilization of retired batteries is of particular importance. A prerequisite for the secondary utilization of retired batteries is the screening of retired batteries. The ideal health feature should be informative and easy to collect. However, this requires access to the complete charging or discharging process. Features require a priori knowledge and validity is often limited to specific data. To avoid feature engineering, we propose a screening method by converting partial voltage into the image with a Markov transition field and Swin transformer. Firstly, the data from the time-series voltage constant current charging are converted into a Markov transition field image. The image is resized by aggregating and compressing to be compatible with computational efficiency and image information. Then, a Swin transformer is selected to classify the transformed images. Compared to other networks, the Swin transformer offers flexibility in modeling hierarchical structures at all scales due to its unique structure of hierarchical and shift windows. Finally, we conducted cyclic experiments on 143 retired batteries. Comparing different methods and partial voltage, the experimental results demonstrate that the proposed retired battery screening method has high robustness and accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
OPV发布了新的文献求助10
1秒前
Yyyiii发布了新的文献求助10
1秒前
司空豁发布了新的文献求助10
2秒前
3秒前
bkagyin应助song采纳,获得10
3秒前
4秒前
刘wt完成签到,获得积分10
9秒前
wtt完成签到,获得积分10
9秒前
10秒前
loey发布了新的文献求助10
10秒前
欣慰的水瑶完成签到,获得积分10
10秒前
乐乐应助liangliang采纳,获得10
11秒前
乔采柳发布了新的文献求助10
13秒前
13秒前
青舒发布了新的文献求助10
13秒前
欣慰小丸子应助若俗人采纳,获得10
14秒前
所所应助楼一笑采纳,获得10
14秒前
刘wt发布了新的文献求助10
14秒前
嘿嘿完成签到,获得积分10
15秒前
15秒前
16秒前
坚强一笑发布了新的文献求助10
16秒前
16秒前
林璇璇完成签到,获得积分10
17秒前
叠氮钠发布了新的文献求助10
17秒前
Lucas应助b15966013195采纳,获得10
18秒前
18秒前
Vivian完成签到,获得积分10
19秒前
wz关注了科研通微信公众号
19秒前
Fairy发布了新的文献求助30
20秒前
所所应助loey采纳,获得10
20秒前
iNk应助loey采纳,获得10
20秒前
康康米其林完成签到,获得积分10
20秒前
酷波er应助King16采纳,获得10
20秒前
Esfec完成签到,获得积分10
20秒前
xhm发布了新的文献求助10
21秒前
Sandy应助shelemi采纳,获得10
21秒前
Sandy应助shelemi采纳,获得10
21秒前
深情安青应助shelemi采纳,获得10
21秒前
慕青应助叶叶采纳,获得10
22秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3942097
求助须知:如何正确求助?哪些是违规求助? 3487390
关于积分的说明 11043455
捐赠科研通 3217803
什么是DOI,文献DOI怎么找? 1778511
邀请新用户注册赠送积分活动 864362
科研通“疑难数据库(出版商)”最低求助积分说明 799375