Teeth And Root Canals Segmentation Using ZXYFormer With Uncertainty Guidance And Weight Transfer

分割 根管 增采样 计算机科学 人工智能 计算机视觉 模式识别(心理学) 牙科 图像(数学) 医学
作者
Shangxuan Li,Yong Du,Ye Li,Chichi Li,Yuming Fang,Cheng Wang,Wu Zhou
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2308.07072
摘要

This study attempts to segment teeth and root-canals simultaneously from CBCT images, but there are very challenging problems in this process. First, the clinical CBCT image data is very large (e.g., 672 *688 * 688), and the use of downsampling operation will lose useful information about teeth and root canals. Second, teeth and root canals are very different in morphology, and it is difficult for a simple network to identify them precisely. In addition, there are weak edges at the tooth, between tooth and root canal, which makes it very difficult to segment such weak edges. To this end, we propose a coarse-to-fine segmentation method based on inverse feature fusion transformer and uncertainty estimation to address above challenging problems. First, we use the downscaled volume data (e.g., 128 * 128 * 128) to conduct coarse segmentation and map it to the original volume to obtain the area of teeth and root canals. Then, we design a transformer with reverse feature fusion, which can bring better segmentation effect of different morphological objects by transferring deeper features to shallow features. Finally, we design an auxiliary branch to calculate and refine the difficult areas in order to improve the weak edge segmentation performance of teeth and root canals. Through the combined tooth and root canal segmentation experiment of 157 clinical high-resolution CBCT data, it is verified that the proposed method is superior to the existing tooth or root canal segmentation methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
SSSYYY完成签到,获得积分10
4秒前
勤恳涵菡完成签到 ,获得积分20
7秒前
小蘑菇应助章鱼采纳,获得10
7秒前
9秒前
科研通AI2S应助FYm采纳,获得10
10秒前
11秒前
Lynne发布了新的文献求助10
16秒前
17秒前
20秒前
怔怔关注了科研通微信公众号
21秒前
w11完成签到,获得积分10
21秒前
21秒前
22秒前
FashionBoy应助我不是阿呆采纳,获得10
22秒前
科目三应助优雅颜采纳,获得100
23秒前
王誓言发布了新的文献求助10
24秒前
27秒前
27秒前
27秒前
30秒前
星辰大海应助苹果白凡采纳,获得10
30秒前
专注的电脑完成签到,获得积分20
31秒前
TP应助刘媛采纳,获得10
32秒前
monster0101发布了新的文献求助10
33秒前
34秒前
36秒前
Milktea123完成签到,获得积分10
38秒前
38秒前
脑洞疼应助热情的阿猫桑采纳,获得10
39秒前
骆其为清完成签到,获得积分10
39秒前
我不是阿呆完成签到,获得积分10
40秒前
优雅颜发布了新的文献求助100
41秒前
呱呱发布了新的文献求助10
43秒前
劉劉完成签到 ,获得积分10
43秒前
Color完成签到,获得积分10
44秒前
YY完成签到 ,获得积分10
45秒前
46秒前
46秒前
XiaoDai完成签到,获得积分10
49秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776812
求助须知:如何正确求助?哪些是违规求助? 3322237
关于积分的说明 10209395
捐赠科研通 3037506
什么是DOI,文献DOI怎么找? 1666749
邀请新用户注册赠送积分活动 797656
科研通“疑难数据库(出版商)”最低求助积分说明 757976