Integrating street view images and deep learning to explore the association between human perceptions of the built environment and cardiovascular disease in older adults

无聊 感知 疾病 建筑环境 活力 心理干预 情感(语言学) 风险感知 心理健康 联想(心理学) 医学 老年学 心理学 应用心理学 社会心理学 工程类 精神科 病理 哲学 土木工程 沟通 神经科学 心理治疗师 神学
作者
Jiwei Xu,Yaolin Liu,Yanfang Liu,Rui An,Zhaomin Tong
出处
期刊:Social Science & Medicine [Elsevier]
卷期号:338: 116304-116304 被引量:8
标识
DOI:10.1016/j.socscimed.2023.116304
摘要

Understanding how built environment attributes affect health is important. While many studies have explored the objective characteristics of built environments that affect health outcomes, few have examined the role of human perceptions of built environments on physical health. Baidu Street View images and computer vision technological advances have helped researchers overcome the constraints of traditional methods of measuring human perceptions (e.g., these methods are laborious, time-consuming, and costly), allowing for large-scale measurements of human perceptions. This study estimates human perceptions of the built environment (e.g., beauty, boredom, depression, safety, vitality, and wealth) by adopting Baidu Street View images and deep learning algorithms. Negative binomial regression models are employed to analyze the relationship between human perceptions and cardiovascular disease in older adults (e.g., ischemic heart disease and cerebrovascular disease). The results indicate that wealth perception is negatively related to the risk of cardiovascular disease. However, depression and vitality perceptions are positively associated with the risk of cardiovascular disease. Furthermore, we found no relationship between beauty, boredom, safety perceptions, and the risk of cardiovascular disease. Our findings highlight the importance of human perceptions in the development of healthy city planning and facilitate a comprehensive understanding of the relationship between built environment characteristics and health outcomes in older adults. They also demonstrate that street view images have the potential to provide insights into this complicated issue, assisting in the formulation of refined interventions and health policies.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
binban128完成签到,获得积分10
2秒前
999发布了新的文献求助200
2秒前
研友_VZG7GZ应助wei1采纳,获得10
2秒前
HAL9000完成签到,获得积分10
2秒前
5秒前
芷莯完成签到,获得积分10
6秒前
biozy完成签到,获得积分10
6秒前
FashionBoy应助回复对方采纳,获得30
8秒前
10秒前
我是老大应助科研小白采纳,获得10
12秒前
等待寄云完成签到 ,获得积分10
12秒前
iOhyeye23完成签到,获得积分10
13秒前
13秒前
999完成签到,获得积分10
14秒前
无敌钢琴大王666完成签到,获得积分10
14秒前
Jjjjj发布了新的文献求助10
16秒前
huangdinghuang完成签到,获得积分10
16秒前
16秒前
Meteor636完成签到 ,获得积分10
17秒前
17秒前
Hazelwf发布了新的文献求助10
18秒前
qi0625完成签到,获得积分10
19秒前
19秒前
英俊的铭应助huangdinghuang采纳,获得10
19秒前
夜航星发布了新的文献求助30
20秒前
20秒前
howeVer完成签到 ,获得积分10
20秒前
sci发布了新的文献求助10
21秒前
xin6688完成签到,获得积分10
21秒前
村霸懒洋洋完成签到,获得积分20
22秒前
木林森幻完成签到,获得积分10
22秒前
woy031222完成签到,获得积分10
22秒前
半晴发布了新的文献求助10
23秒前
24秒前
xin6688发布了新的文献求助10
25秒前
26秒前
Millian完成签到 ,获得积分10
27秒前
SMG完成签到 ,获得积分10
28秒前
29秒前
科研通AI6.2应助Hazelwf采纳,获得30
30秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
The Dance of Butch/Femme: The Complementarity and Autonomy of Lesbian Gender Identity 500
Driving under the influence: Epidemiology, etiology, prevention, policy, and treatment 500
Differentiation Between Social Groups: Studies in the Social Psychology of Intergroup Relations 350
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5876935
求助须知:如何正确求助?哪些是违规求助? 6538375
关于积分的说明 15679971
捐赠科研通 4995613
什么是DOI,文献DOI怎么找? 2692242
邀请新用户注册赠送积分活动 1634443
关于科研通互助平台的介绍 1592140