MSGformer: A multi-scale grid transformer network for 12-lead ECG arrhythmia detection

计算机科学 模式识别(心理学) 人工智能 特征提取 网格 变压器 数据挖掘 波形 比例(比率) 机器学习 电压 工程类 数学 物理 电气工程 电信 量子力学 雷达 几何学
作者
Changqing Ji,Liyong Wang,Jing Qin,Lu Liu,Y. Han,Zumin Wang
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:87: 105499-105499 被引量:18
标识
DOI:10.1016/j.bspc.2023.105499
摘要

The electrocardiogram (ECG) is a ubiquitous medical diagnostic tool employed to identify arrhythmias that are characterized by anomalous waveform morphology and erratic intervals. Current ECG analysis methods primarily rely on the feature extraction of single leads or scales, thereby overlooking the critical complementary data obtainable from multiple channels and scales. This paper introduces the Multi-Scale Grid Transformer (MSGformer) network, which extracts spatial features from limb and chest leads and employs a multi-scale grid attention mechanism to capture temporal features. The self-attention mechanism-based multi-lead feature fusion approach leverages diverse leads’ perspectives to reflect each lead’s heart’s comprehensive state and extract unique essential features. Furthermore, MSGformer incorporates a multi-scale grid attention feature extraction strategy that employs multi-head and multi-scale attention mechanisms to extract multi-scale temporal features from two dimensions. The MSGformer network combines these feature extraction strategies, resulting in simultaneous capturing of morphological characteristics across different leads and temporal characteristics within the same lead in ECG. This integration facilitates the effective detection of morphological abnormalities and erratic intervals in cardiac electrical activity. Utilizing the publicly available 2018 China Physiological Signal Challenge (CPSC 2018) and MIT-BIH electrocardiogram datasets, the performance of MSGformer was evaluated and compared to existing ECG classification models. Experimental results demonstrate that MSGformer achieved an F1 score of 0.86, while on the MIT-BIH dataset, it attained accuracy, sensitivity, and positive predictive value of 99.28%, 97.13%, and 97.87%, respectively, outperforming other current models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鸢翔flybird完成签到,获得积分10
刚刚
刚刚
dreamboat发布了新的文献求助10
1秒前
1秒前
棋士应助呆萌安双采纳,获得10
1秒前
kjw发布了新的文献求助10
1秒前
1秒前
2秒前
才哥完成签到,获得积分10
2秒前
Boxcc完成签到 ,获得积分10
2秒前
酷酷世德完成签到,获得积分10
2秒前
007完成签到,获得积分10
2秒前
昏睡的蟠桃应助吕耀炜采纳,获得50
3秒前
3秒前
打打应助sarrawin采纳,获得10
3秒前
Jasper应助跳跃飞薇采纳,获得10
3秒前
4秒前
王金磊完成签到,获得积分10
4秒前
4秒前
Ronnie发布了新的文献求助10
4秒前
zhr发布了新的文献求助10
4秒前
Cong完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Wd发布了新的文献求助10
6秒前
YAMO一发布了新的文献求助10
6秒前
ofafafa完成签到,获得积分10
6秒前
7秒前
付创发布了新的文献求助10
7秒前
7秒前
sajelsch发布了新的文献求助10
7秒前
乐观的鞋垫完成签到,获得积分10
8秒前
鳗鱼友灵完成签到,获得积分10
8秒前
9秒前
10秒前
Owen应助YAMO一采纳,获得10
10秒前
和谐耳机发布了新的文献求助20
11秒前
雨霖霖完成签到,获得积分10
11秒前
zhr完成签到,获得积分10
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947469
求助须知:如何正确求助?哪些是违规求助? 3492682
关于积分的说明 11066299
捐赠科研通 3223567
什么是DOI,文献DOI怎么找? 1781557
邀请新用户注册赠送积分活动 866373
科研通“疑难数据库(出版商)”最低求助积分说明 800332