Demand and supply gap analysis of Chinese new energy vehicle charging infrastructure: Based on CNN-LSTM prediction model

计算机科学 卷积神经网络 供求关系 人工神经网络 需求预测 环境经济学 人工智能 运筹学 工程类 电气工程 经济 微观经济学
作者
Baozhu Li,Xiaotian Lv,Jiaxin Chen
出处
期刊:Renewable Energy [Elsevier BV]
卷期号:220: 119618-119618 被引量:21
标识
DOI:10.1016/j.renene.2023.119618
摘要

The sales of new energy vehicles (NEVs) and the construction of charging infrastructure promote and constrain each other. It is crucial for the development of the new energy vehicle industry to understand the gap clearly and accurately between the supply and demand of NEV charging infrastructure. In this paper, a neural network combined model based on convolutional neural network (CNN) and long and short-term memory (LSTM) is introduced for accurate prediction of NEVS sales and charging infrastructure ownership. Compared with other traditional and combined models, the CNN-LSTM combined model performs best in multiple evaluation metrics while using less computing power. The RMSE, MAE, MAPE, and R2 of the CNN-LSTM combined model were 52.80, 42.67, 17 %, and 0.78, respectively. Accordingly, it is sufficient to demonstrate the excellent prediction performance of the CNN-LSTM combined model constructed in this paper. The forecast results show that in 2025, the ratio of NEVs to public charging piles will rise to 10.2:1 and the ratio to private charging piles will fall to 2.5:1. The overall ratio shows a downward trend and is expected to reach 2:1. There is a gap in the demand for NEV charging infrastructure. Finally, this paper makes suggestions for narrowing the gap between the supply and demand of NEV charging infrastructure and the sustainable development of the NEV industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
amberzyc应助katata采纳,获得10
1秒前
1秒前
追寻听云发布了新的文献求助30
1秒前
2秒前
2秒前
暗栀完成签到,获得积分20
2秒前
空空应助苗条曲奇采纳,获得10
3秒前
温暖的道天完成签到,获得积分10
3秒前
bylawa完成签到,获得积分10
3秒前
菜鸟发布了新的文献求助10
4秒前
DrY完成签到,获得积分20
4秒前
5秒前
CipherSage应助RC_Wang采纳,获得10
5秒前
5秒前
睡不着的鱼完成签到 ,获得积分10
5秒前
6秒前
7秒前
7秒前
7秒前
7秒前
NexusExplorer应助cwm采纳,获得10
7秒前
Amanda发布了新的文献求助10
7秒前
酷波er应助b3lyp采纳,获得10
7秒前
又困发布了新的文献求助10
7秒前
上官若男应助cc采纳,获得10
8秒前
8秒前
Raino完成签到,获得积分10
8秒前
彭于晏应助师忆夏采纳,获得10
9秒前
9秒前
杨纯宇发布了新的文献求助10
9秒前
青枝完成签到,获得积分10
10秒前
11秒前
11秒前
YiWei发布了新的文献求助10
11秒前
万能图书馆应助DZQ采纳,获得10
12秒前
12秒前
glacial完成签到,获得积分10
12秒前
Chloe发布了新的文献求助10
12秒前
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5261749
求助须知:如何正确求助?哪些是违规求助? 4422906
关于积分的说明 13767729
捐赠科研通 4297318
什么是DOI,文献DOI怎么找? 2357911
邀请新用户注册赠送积分活动 1354280
关于科研通互助平台的介绍 1315383