亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Driver Fatigue Detection Using Measures of Heart Rate Variability and Electrodermal Activity

心率变异性 心理学 听力学 物理医学与康复 心脏病学 内科学 心率 医学 血压
作者
Yubo Jiao,C. Zhang,Xiaoyu Chen,Liping Fu,Chaozhe Jiang,Chao Wen
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:25 (6): 5510-5524 被引量:7
标识
DOI:10.1109/tits.2023.3333252
摘要

This paper investigated the feasibility and reliability of employing various physiological measures -for determining drivers' fatigue levels, which may ultimately lead to a solution for real-time detection of driver fatigue state for improving driving and traffic safety. An experimental study was conducted to collect the data, including fatigue levels assessed via the Karolinska sleepiness scale and heart rate variability (HRV) and electrodermal activity (EDA) features. Based on an extensive statistical analysis of the collected data, significant differences in numerous HRV and EDA features were found across varying fatigue levels. Employing several machine learning techniques for classification purposes, the most favorable binary classification performance was achieved using the Light Gradient Boosting Machine classifier, with an accuracy rate of 88.7% when HRV and EDA features were utilized as inputs. Meanwhile, for three-class classification, the accuracy decreased slightly to 85.6% when employing the Random Forest classifier. These outcomes underscore the potential of HRV and EDA feature fusion in capturing diverse physiological responses to fatigue, thereby bolstering fatigue detection performance. Besides, subject-independent classification yielded an accuracy of 52.0% and 53.3%, reflecting the potential bias introduced by unobserved heterogeneity in classification models. Moreover, feature selection should be prioritized over dimensionality reduction in feature fusion endeavors to diminish feature redundancy and prevent information loss. The findings of this study could contribute to the development of reliable driver fatigue detection methodologies utilizing readily available measures of physiological response measures, such as HRV and EDA features.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助hxy采纳,获得30
12秒前
Jason发布了新的文献求助10
1分钟前
上官若男应助Jason采纳,获得10
1分钟前
魔幻的小蘑菇完成签到 ,获得积分10
1分钟前
MchemG完成签到,获得积分0
1分钟前
2分钟前
chen发布了新的文献求助10
2分钟前
2分钟前
2分钟前
灯露驳回了Hello应助
2分钟前
2分钟前
hq完成签到 ,获得积分10
2分钟前
胡萝卜完成签到,获得积分10
2分钟前
传奇3应助科研通管家采纳,获得10
3分钟前
Sylvie应助科研通管家采纳,获得10
3分钟前
李桃子发布了新的文献求助10
3分钟前
李桃子完成签到,获得积分10
3分钟前
Jasper应助李桃子采纳,获得10
3分钟前
bkagyin应助山肆采纳,获得10
3分钟前
小二郎应助开朗的晓丝采纳,获得10
4分钟前
orixero应助aaaaa采纳,获得10
4分钟前
4分钟前
量子星尘发布了新的文献求助150
4分钟前
aaaaa发布了新的文献求助10
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
疯狂喵完成签到 ,获得积分10
4分钟前
山肆发布了新的文献求助10
5分钟前
Fiona完成签到 ,获得积分10
5分钟前
IMP完成签到 ,获得积分10
5分钟前
山肆完成签到,获得积分20
5分钟前
彭于晏应助zm采纳,获得10
5分钟前
田様应助小贾爱喝冰美式采纳,获得10
6分钟前
科研通AI5应助wangwangyj采纳,获得10
6分钟前
6分钟前
6分钟前
6分钟前
zm发布了新的文献求助10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4851596
求助须知:如何正确求助?哪些是违规求助? 4150244
关于积分的说明 12856674
捐赠科研通 3898247
什么是DOI,文献DOI怎么找? 2142393
邀请新用户注册赠送积分活动 1162143
关于科研通互助平台的介绍 1062253