Multi-objective optimization of reservoir development strategy with hybrid artificial intelligence method

计算机科学 多目标优化 最优化问题 储层模拟 井控 人工智能 防洪 工作流程 数学优化 机器学习 大洪水 工程类 石油工程 算法 数学 机械工程 钻探 哲学 神学 数据库
作者
Xinyu Zhuang,Wendong Wang,Yuliang Su,Bicheng Yan,Yuan Li,Lei Li,Yongmao Hao
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:241: 122707-122707 被引量:10
标识
DOI:10.1016/j.eswa.2023.122707
摘要

Optimization of subsurface hydrocarbon production holds paramount importance for decision-makers as it determines crucial development strategies such as optimal well placement and well control parameters (e.g. injection/production rates of injectors and producers). Despite the availability of numerous established optimization methods in this field, traditional reservoir production optimization methods face challenges in simultaneously addressing multiple development objectives and coordinating the interaction of well control parameters in different control steps. In this work, we construct a hybrid artificial intelligence method to jointly optimize well placement and well control parameters, taking into account two development objectives and dynamic optimization. It consists of two stages. First, a reservoir potential map is generated with the production potential formula that considers reservoir pressure, remaining oil saturation and other reservoir properties (permeability, hydrocarbon column height) etc. The reservoir potential map provides guidance for placing well in medium to high potential areas and engineering constraints for the optimization process. Then, a hybrid artificial intelligence method that couples deep learning method (Long and Short Term Memory (LSTM)) and multi-objective optimization algorithm (Non-dominated Sorting Genetic Algorithm II (NSGA- II)) is established to seek a compromise between the two objectives in water-flooding processes. The LSTM neural network is trained as the surrogate model to replace the high-fidelity simulator to achieve high efficiency of overall optimization workflow. The NSGA-II algorithm is employed for handling the joint optimization problem of well placement and well control parameters by maximizing the cumulative oil production and minimizing the water cut. The performance of the proposed method is tested on one benchmark function and two reservoir models. On the 2D synthetic reservoir model the optimized scheme leads to a notable increase of 3×104 m3 in cumulative oil production, accompanied by 17% reduction in water cut when contrasted with the base scheme. Similarly, within the 3D reservoir model, the optimized scheme results in a substantial enhancement, boosting cumulative oil production by 14×104 m3 and reducing water cut by 20% compared to the base scheme. Moreover, the proposed method surpasses alternative multi-objective optimization (MOO) algorithms by demonstrating 82% and 95% reduction in optimization time, respectively. The results demonstrate that this method can provide the optimal water-flooding strategies under the premise of different development objectives. The Pareto front (or optimal solutions) generated by the hybrid method offers a variety of diverse water-flooding strategies to assist subsurface engineers in making informed decisions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
碳烤小肥肠完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
小团子发布了新的文献求助10
8秒前
小地蛋完成签到 ,获得积分10
9秒前
Hello应助makabakala采纳,获得10
9秒前
完美世界应助tingyuan采纳,获得10
9秒前
10秒前
喜欢玩辅助完成签到,获得积分10
12秒前
幽默囧发布了新的文献求助10
12秒前
12秒前
e1发布了新的文献求助10
12秒前
12秒前
图图完成签到,获得积分10
12秒前
14秒前
15秒前
888完成签到,获得积分10
16秒前
NN应助ling22采纳,获得10
17秒前
17秒前
等待德地完成签到,获得积分10
18秒前
jpc发布了新的文献求助30
18秒前
坤坤发布了新的文献求助10
19秒前
ling22完成签到,获得积分10
21秒前
冷酷雅容发布了新的文献求助10
22秒前
22秒前
lgs发布了新的文献求助10
22秒前
22秒前
888发布了新的文献求助10
22秒前
领导范儿应助RaynorHank采纳,获得10
23秒前
24秒前
幽默囧完成签到,获得积分10
25秒前
坤坤完成签到,获得积分10
26秒前
zyb完成签到,获得积分20
26秒前
treelet007发布了新的文献求助10
26秒前
mingming完成签到,获得积分10
26秒前
在水一方应助吴未采纳,获得10
27秒前
研研不断完成签到,获得积分10
28秒前
活泼学生完成签到 ,获得积分10
28秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
The Burge and Minnechaduza Clarendonian mammalian faunas of north-central Nebraska 206
Youths Who Reason Exceptionally Well Mathematically and/or Verbally: Using the MVT:D4 Model to Develop Their Talents 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3831597
求助须知:如何正确求助?哪些是违规求助? 3373747
关于积分的说明 10481372
捐赠科研通 3093719
什么是DOI,文献DOI怎么找? 1702969
邀请新用户注册赠送积分活动 819237
科研通“疑难数据库(出版商)”最低求助积分说明 771319