High-accuracy prediction and compensation of industrial robot stiffness deformation

刚度 关节刚度 计算机科学 变形(气象学) 加权 材料科学 非线性系统 控制理论(社会学) 人工智能 结构工程 算法 工程类 复合材料 声学 物理 控制(管理) 量子力学
作者
Congcong Ye,Jixiang Yang,Han Ding
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:233: 107638-107638 被引量:42
标识
DOI:10.1016/j.ijmecsci.2022.107638
摘要

Industrial robots (IRs) are promising options for machining large complex structural parts due to the higher flexibility, larger operating space, and lower cost compared with multi-axis machine tools. However, the relatively low posture-dependent stiffness and large stiffness deformation of IRs significantly deteriorate the contour accuracy of milling in which the cutting force is large generally. It is very complex to achieve a precise stiffness model and predict stiffness deformation of IRs because of the joint clearance, drift of zero-position, and other nonlinear factors. The conventional stiffness model of IRs only takes each joint as a constant linear torsion spring into consideration and ignores other difficult-to-model factors, which leads to low-accuracy identified results and thereafter induces deformation prediction errors. The data-driven approach can be used to obtain an accurate stiffness and deformation model, but a large amount of experimental data is required and it will cost enormous time and effort. In order to circumvent the experimental data deficiency and difficult-to-model issue, a simulation-driven transfer learning method named Adaptive Domain Adversarial Neural Network with Dual-Regressions (ADANN-2R) is designed for robot deformation prediction. Amounts of coarse deformation data, which are generated by the conventional stiffness model, are regarded as source data. And few real deformation data, which are obtained by deformation experiments, are regarded as target data. The Dual-Regressions are designed after the feature extractor, and the weighting parameters are adjusted adaptively to tackle the different magnitude of the regression loss and domain discrimination loss. The ADANN-2R aligns the simulated source data and real target data to perform adversarial training, and an accurate target deformation predictor is achieved. Experimental results indicate that the proposed ADANN-2R can obtain high-accuracy prediction with few real data compared with the conventional stiffness model. Compared with the path without deformation compensation and the pre-compensated path using the conventional stiffness model, the maximum position error of the pre-compensated path using the proposed ADANN-2R is reduced by 78.12% and 32.45%, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不吃橘子完成签到,获得积分10
刚刚
英俊的铭应助科研通管家采纳,获得10
1秒前
bkagyin应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
李健应助科研通管家采纳,获得10
1秒前
英姑应助科研通管家采纳,获得10
1秒前
苏南完成签到 ,获得积分10
1秒前
大模型应助科研通管家采纳,获得10
1秒前
揽月yue应助科研通管家采纳,获得10
1秒前
情怀应助科研通管家采纳,获得10
1秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
song完成签到 ,获得积分10
2秒前
慎ming发布了新的文献求助10
2秒前
Aprial完成签到,获得积分10
3秒前
WMT完成签到 ,获得积分10
3秒前
YY发布了新的文献求助10
5秒前
科研小达子完成签到,获得积分10
6秒前
CipherSage应助10采纳,获得10
6秒前
背书强完成签到 ,获得积分10
6秒前
超级的飞飞完成签到,获得积分10
7秒前
慎ming完成签到,获得积分10
7秒前
Sherry完成签到,获得积分10
9秒前
韩野完成签到,获得积分10
10秒前
北冥有鱼完成签到,获得积分10
11秒前
欢呼南晴完成签到,获得积分10
12秒前
13秒前
帕提古丽完成签到 ,获得积分20
14秒前
无花果应助打哈哈儿采纳,获得10
15秒前
知行者完成签到 ,获得积分10
15秒前
aodilee完成签到,获得积分10
16秒前
ang完成签到,获得积分10
17秒前
V_I_G完成签到 ,获得积分10
17秒前
19秒前
whysoserious完成签到,获得积分10
21秒前
Faine完成签到 ,获得积分10
22秒前
尧桦完成签到 ,获得积分10
22秒前
赵李艺完成签到 ,获得积分10
24秒前
霸气的忆丹完成签到,获得积分10
24秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801092
求助须知:如何正确求助?哪些是违规求助? 3346708
关于积分的说明 10329984
捐赠科研通 3063130
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807491
科研通“疑难数据库(出版商)”最低求助积分说明 763726