3D wave simulation based on a deep learning model for spatiotemporal prediction

计算机科学 深度学习 人工智能 机器学习
作者
Ying Li,Xiaohui Zhang,Lingxiao Cheng,Mingxing Xie,Kai Cao
出处
期刊:Ocean Engineering [Elsevier]
卷期号:263: 112420-112420 被引量:5
标识
DOI:10.1016/j.oceaneng.2022.112420
摘要

Ocean wave simulations must be conducted in real-time and are more complicated than other natural scenery simulations. This study proposes a novel ocean wave simulation method that inputs the spatiotemporal sequences of the wave height field obtained by a wave spectrum formula and the fast Fourier transform (FFT) algorithm into a convolutional long short-term memory (ConvLSTM) training model. The method resolves the problems of poor real-time performance and authenticity in the traditional ocean wave simulation process. The ocean wave simulation method calculates the wave height field rapidly using the ConvLSTM-based model rather than the traditional FFT method. Finally, it accelerates the wave simulation process and predicts the height field at a future time. The model was evaluated in a simulation experiment on two kinds of wave spectra. The experimental results confirmed the realism of the waves simulated by the proposed model. The computational speed of the ConvLSTM model exceeds that of the FFT method, especially as the sample size and length of the prediction sequence increase, indicating the effectiveness and feasibility of the ConvLSTM model in accelerating the FFT algorithm. • The wave height fields obtained by FFT algorithm can be regarded as a sequence of height maps with spatiotemporal features. • A deep learning model for spatiotemporal prediction named ConvLSTM can replace FFT algorithm in predicting height fields. • The ConvLSTM model can output one or more height maps in a single execution and outperforms FFT in real-time performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助风趣的夜南采纳,获得10
1秒前
深情安青应助老木虫采纳,获得10
1秒前
fff完成签到,获得积分10
1秒前
2秒前
科科克尔克完成签到 ,获得积分10
2秒前
韦远侵完成签到,获得积分10
2秒前
霍明轩完成签到 ,获得积分10
3秒前
Sea_U发布了新的文献求助10
4秒前
5秒前
Jasper应助RunsenXu采纳,获得10
5秒前
5秒前
一二发布了新的文献求助10
6秒前
gaotianqi发布了新的文献求助10
6秒前
无花果应助yuyu采纳,获得10
6秒前
7秒前
嘿嘿嘿发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
积极的睫毛完成签到,获得积分10
11秒前
Lyue发布了新的文献求助10
12秒前
14秒前
老木虫发布了新的文献求助10
14秒前
木子林夕完成签到,获得积分10
14秒前
swsx1317发布了新的文献求助10
15秒前
LY发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
15秒前
jun完成签到 ,获得积分10
15秒前
天天快乐应助12345采纳,获得10
15秒前
16秒前
我要发nature完成签到,获得积分10
16秒前
swinging完成签到,获得积分20
18秒前
以菱完成签到 ,获得积分10
18秒前
栗子完成签到,获得积分10
19秒前
20秒前
21秒前
wangfang0228完成签到 ,获得积分10
21秒前
21秒前
llll完成签到 ,获得积分0
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5796959
求助须知:如何正确求助?哪些是违规求助? 5781136
关于积分的说明 15493567
捐赠科研通 4923939
什么是DOI,文献DOI怎么找? 2650559
邀请新用户注册赠送积分活动 1597853
关于科研通互助平台的介绍 1552542