Synergistic Improvement of 5-Aminolevulinic Acid Production with Synthetic Scaffolds and System Pathway Engineering

合成生物学 代谢工程 代谢途径 生物化学 发酵 化学 蛋白质工程 生物合成 细胞生物学 生物 计算生物学
作者
Zhengshan Luo,Fei Pan,Yifan Zhu,Shanshan Du,Yifan Yan,Rui Wang,Sha Li,Hong Xu
出处
期刊:ACS Synthetic Biology [American Chemical Society]
卷期号:11 (8): 2766-2778 被引量:17
标识
DOI:10.1021/acssynbio.2c00157
摘要

Engineered synthetic scaffolds to organize metabolic pathway enzymes and system pathway engineering to fine-tune metabolic fluxes play essential roles in microbial production. Here, we first obtained the most favorable combination of key enzymes for 5-aminolevulinic acid (5-ALA) synthesis through the C5 pathway by screening enzymes from different sources and optimizing their combination in different pathways. Second, we successfully constructed a multienzyme complex assembly system with PduA*, which spatially recruits the above three key enzymes for 5-ALA synthesis in a designable manner. By further optimizing the ratio of these key enzymes in synthetic scaffolds, the efficiency of 5-ALA synthesis through the C5 pathway was significantly improved. Then, the competitive metabolism pathway was fine-tuned by rationally designing different antisense RNAs, further significantly increasing 5-ALA titers. Furthermore, for efficient 5-ALA synthesis, obstacles of NADH and NADPH imbalances and feedback inhibition of the synthesis pathway were also overcome through engineering the NADPH regeneration pathway and transport pathway, respectively. Finally, combining these strategies with further fermentation optimization, we achieved a final 5-ALA titer of 11.4 g/L. These results highlight the importance of synthetic scaffolds and system pathway engineering to improve the microbial cell factory production performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ddd发布了新的文献求助10
刚刚
bobobo发布了新的文献求助10
1秒前
1秒前
yingyangkuaixian完成签到,获得积分20
1秒前
2秒前
2秒前
大模型应助Ms采纳,获得10
2秒前
2秒前
2秒前
3秒前
哈哈哥发布了新的文献求助10
3秒前
3秒前
4秒前
ChuangyangLi发布了新的文献求助10
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
ddd完成签到,获得积分10
5秒前
li完成签到,获得积分10
5秒前
6秒前
旷野完成签到 ,获得积分10
6秒前
cckk发布了新的文献求助10
6秒前
快乐非笑完成签到,获得积分10
6秒前
SASI发布了新的文献求助10
7秒前
7秒前
搜集达人应助杏仁儿采纳,获得10
7秒前
舒心夜蕾发布了新的文献求助10
7秒前
花花发布了新的文献求助20
8秒前
KING完成签到,获得积分10
8秒前
Vera123完成签到,获得积分10
9秒前
9秒前
selena完成签到,获得积分10
9秒前
9秒前
10秒前
上官若男应助舒心的幻灵采纳,获得10
11秒前
11秒前
科研通AI5应助落雨采纳,获得10
11秒前
打打应助yx阿聪采纳,获得10
11秒前
11秒前
欣慰的锦程完成签到,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Optimization and Learning via Stochastic Gradient Search 300
Higher taxa of Basidiomycetes 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4673874
求助须知:如何正确求助?哪些是违规求助? 4052224
关于积分的说明 12531184
捐赠科研通 3745991
什么是DOI,文献DOI怎么找? 2068917
邀请新用户注册赠送积分活动 1098052
科研通“疑难数据库(出版商)”最低求助积分说明 978276