PVCsNet : A Specialized Artificial Intelligence-Based Model to Classify Premature Ventricular Contractions from ECG Images

计算机科学 人工智能 心电图 模式识别(心理学) 计算机视觉 心脏病学 医学
作者
Biren Guo,Fei Gu,Ziheng Zhang,Zeyang Zhang,Shikun Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11
标识
DOI:10.1109/jbhi.2024.3471510
摘要

Premature ventricular complexes (PVCs) are irregularities in heart rhythm where the ventricles contract earlier than expected, disrupting the normal cardiac cycle. Identifying the origin of PVCs before surgery is crucial as it can reduce operation duration, lower radiation exposure, and potentially enhance ablation success rates. Current detection methods face limitations in accuracy and data processing, often requiring large datasets and complex interpretations. This study presents PVCsNet, a deep-learning network specifically designed for classifying premature ventricular complexes (PVCs) in ECG images. It incorporates residual structures and attention mechanisms to enhance classification performance. PVCsNet consists of four 3×3 convolutional layers as feature extractors, followed by residual connections and attention blocks. This design enables the network to map image features to class probability distributions, enhancing performance even with limited data. Our experimental results demonstrate that using the SE Block with MaxPool and a ratio of 4, PVCsNet achieves an overall accuracy of 94.49%, with high precision in critical categories and a moderate parameter size. We successfully categorize the data into six distinct classes based on their origin locations in the heart: right ventricular outflow tract (RVOT), left ventricular outflow tract (LVOT), papillary muscle (PM), valvular annulus (VA), summit, and His-Purkinje system (HPS). Among these, RVOT is the most common and crucial origin of PVCs. PM and HPS are also significant origins due to their clinical implications. This study demonstrates the potential of PVCsNet in clinical diagnostics, providing promising results in classifying ECG images and contributing to future medical research and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liz完成签到 ,获得积分10
刚刚
天天快乐应助ormita采纳,获得10
刚刚
852应助生动的如花采纳,获得10
刚刚
子车茗应助醒醒采纳,获得30
1秒前
xixi关注了科研通微信公众号
1秒前
1秒前
yoowt完成签到,获得积分10
2秒前
抹茶麻薯发布了新的文献求助10
3秒前
3秒前
3秒前
4秒前
无歧完成签到,获得积分10
4秒前
5秒前
坦率夕阳完成签到,获得积分10
6秒前
7秒前
7秒前
8秒前
超级野狼完成签到,获得积分20
8秒前
学习猴发布了新的文献求助10
8秒前
9秒前
wu完成签到,获得积分10
9秒前
Clara凤发布了新的文献求助30
9秒前
平常的毛豆应助魔幻若血采纳,获得10
10秒前
finerain7发布了新的文献求助10
10秒前
wwl发布了新的文献求助20
10秒前
10秒前
OliAn完成签到,获得积分10
10秒前
小朵完成签到 ,获得积分10
10秒前
黄huang完成签到,获得积分10
10秒前
超级野狼发布了新的文献求助10
11秒前
CipherSage应助于林渤采纳,获得10
11秒前
kiki发布了新的文献求助10
11秒前
超级大定春完成签到,获得积分20
11秒前
哈哈完成签到,获得积分10
11秒前
不要引力完成签到,获得积分10
11秒前
HR112发布了新的文献求助10
11秒前
xx完成签到,获得积分10
12秒前
认真子默发布了新的文献求助20
12秒前
充电宝应助zyppor采纳,获得10
13秒前
完美世界应助Hh采纳,获得50
13秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
中国临床肿瘤学会(CSCO)儿童及青少年白血病诊疗指南2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805753
求助须知:如何正确求助?哪些是违规求助? 3350623
关于积分的说明 10349982
捐赠科研通 3066532
什么是DOI,文献DOI怎么找? 1683847
邀请新用户注册赠送积分活动 809142
科研通“疑难数据库(出版商)”最低求助积分说明 765393