PVCsNet : A Specialized Artificial Intelligence-Based Model to Classify Premature Ventricular Contractions from ECG Images

计算机科学 人工智能 心电图 模式识别(心理学) 计算机视觉 心脏病学 医学
作者
Biren Guo,Fei Gu,Ziheng Zhang,Zeyang Zhang,Shikun Sun
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-11 被引量:1
标识
DOI:10.1109/jbhi.2024.3471510
摘要

Premature ventricular complexes (PVCs) are irregularities in heart rhythm where the ventricles contract earlier than expected, disrupting the normal cardiac cycle. Identifying the origin of PVCs before surgery is crucial as it can reduce operation duration, lower radiation exposure, and potentially enhance ablation success rates. Current detection methods face limitations in accuracy and data processing, often requiring large datasets and complex interpretations. This study presents PVCsNet, a deep-learning network specifically designed for classifying premature ventricular complexes (PVCs) in ECG images. It incorporates residual structures and attention mechanisms to enhance classification performance. PVCsNet consists of four 3×3 convolutional layers as feature extractors, followed by residual connections and attention blocks. This design enables the network to map image features to class probability distributions, enhancing performance even with limited data. Our experimental results demonstrate that using the SE Block with MaxPool and a ratio of 4, PVCsNet achieves an overall accuracy of 94.49%, with high precision in critical categories and a moderate parameter size. We successfully categorize the data into six distinct classes based on their origin locations in the heart: right ventricular outflow tract (RVOT), left ventricular outflow tract (LVOT), papillary muscle (PM), valvular annulus (VA), summit, and His-Purkinje system (HPS). Among these, RVOT is the most common and crucial origin of PVCs. PM and HPS are also significant origins due to their clinical implications. This study demonstrates the potential of PVCsNet in clinical diagnostics, providing promising results in classifying ECG images and contributing to future medical research and diagnosis.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
茶暖完成签到,获得积分10
刚刚
刚刚
yizhiGao完成签到,获得积分10
1秒前
Hiker完成签到,获得积分10
1秒前
刘sir发布了新的文献求助10
2秒前
酷酷李可爱婕完成签到 ,获得积分10
2秒前
竹車应助沙绮晴采纳,获得10
2秒前
一一完成签到,获得积分10
2秒前
2秒前
蛀牙牙完成签到,获得积分10
2秒前
3秒前
欢喜风完成签到,获得积分10
3秒前
研友_5Z4ZA5完成签到,获得积分10
3秒前
kk完成签到,获得积分10
3秒前
3秒前
4秒前
4秒前
acuter发布了新的文献求助10
4秒前
核桃发布了新的文献求助10
4秒前
HOXXXiii完成签到,获得积分10
4秒前
5秒前
笨笨如之完成签到 ,获得积分10
5秒前
Hanna2021完成签到,获得积分10
5秒前
5秒前
wadaxiwa完成签到,获得积分10
5秒前
王一g完成签到,获得积分10
5秒前
小王发布了新的文献求助10
6秒前
聪慧皓轩完成签到,获得积分20
6秒前
科研通AI2S应助若灵采纳,获得10
6秒前
7秒前
马阡榕完成签到 ,获得积分10
7秒前
玄叶完成签到,获得积分10
7秒前
来一大碗麻辣烫完成签到,获得积分10
7秒前
真白硝子完成签到,获得积分20
7秒前
小妮子发布了新的文献求助10
8秒前
迅猛2002完成签到,获得积分10
8秒前
貔貅完成签到,获得积分10
8秒前
小安发布了新的文献求助10
8秒前
董方圆应助陈肖楠采纳,获得10
9秒前
老板娘完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4473074
求助须知:如何正确求助?哪些是违规求助? 3932208
关于积分的说明 12199211
捐赠科研通 3586845
什么是DOI,文献DOI怎么找? 1971671
邀请新用户注册赠送积分活动 1009576
科研通“疑难数据库(出版商)”最低求助积分说明 903292