商业周期
骨料(复合)
向量自回归
股票市场
叙述的
主题(计算)
新闻分析
库存(枪支)
商业模式
经济
计量经济学
金融经济学
计算机科学
营销
宏观经济学
业务
历史
财务
语言学
万维网
背景(考古学)
材料科学
哲学
考古
复合材料
作者
Leland Bybee,Bryan Kelly,Asaf Manela,Dacheng Xiu
摘要
ABSTRACT We propose an approach to measuring the state of the economy via textual analysis of business news. From the full text of 800,000 Wall Street Journal articles for 1984 to 2017, we estimate a topic model that summarizes business news into interpretable topical themes and quantifies the proportion of news attention allocated to each theme over time. News attention closely tracks a wide range of economic activities and can forecast aggregate stock market returns. A text‐augmented vector autoregression demonstrates the large incremental role of news text in forecasting macroeconomic dynamics. We retrieve the narratives that underlie these improvements in market and business cycle forecasts.
科研通智能强力驱动
Strongly Powered by AbleSci AI