A branched Convolutional Neural Network for RGB-D image classification of ceramic pieces

计算机科学 RGB颜色模型 卷积神经网络 人工智能 人工神经网络 深度学习 特征(语言学) 模式识别(心理学) 计算机视觉 语言学 哲学
作者
Daniel Carreira,Nuno M. M. Rodrigues,Rolando Miragaia,Paulo César Costa,José Ribeiro,Fábio Gaspar,Ántónio Pereira
出处
期刊:Applied Soft Computing [Elsevier]
卷期号:165: 112088-112088 被引量:1
标识
DOI:10.1016/j.asoc.2024.112088
摘要

From smart sensors on assembly lines to robots performing complex tasks, the fourth industrial revolution is rapidly transforming manufacturing. The growing prominence of 3D cameras in the industry has led the computer vision community to explore innovative ways of integrating depth and color data to achieve higher precision, essential for ensuring product quality in manufacturing. In this study, we introduce an innovative branched convolutional neural network designed to produce high-speed classification of multimodal images, such as RGB-Depth (RGB-D) images. The fundamental concept underlying the branched approach is the specialization of each branch as a dedicated feature extractor for a single modality, followed by their merge (intermediate fusion) to enable effective classification. Feeding our model is our novel multimodal dataset, named CeramicNet, composed of 8 classes that include RGB, depth, and RGB-D variations to enable extensive experimentation and evaluation of the models which, to the best of our knowledge, has not been previously introduced in the computer vision community. We conducted a series of experiments on the CeramicNet dataset. These experiments aimed at fine-tuning the model, assessing the influence of various depth technologies, exploring individual modalities, examining their collective impact, and performing comprehensive data analysis. Comparing our solution against seven widely used models, we achieved remarkable results, securing the top position with a precision of 99.89, with a lead of over 1% against the nearest competitor. What is more, the proposed solution yields an inference time of 127.6 ms — being nearly three times faster than the second-best performer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助陈成采纳,获得10
1秒前
你讲咩发布了新的文献求助10
1秒前
hqr发布了新的文献求助10
1秒前
852应助tiezhu采纳,获得10
2秒前
2秒前
是安山发布了新的文献求助10
3秒前
3秒前
3秒前
研友_VZG7GZ应助哩哩采纳,获得10
3秒前
田様应助自觉迎夏采纳,获得10
4秒前
99910119完成签到,获得积分10
4秒前
4秒前
ysy完成签到 ,获得积分10
5秒前
魔幻若血发布了新的文献求助10
5秒前
YY关闭了YY文献求助
5秒前
Iris完成签到,获得积分10
6秒前
6秒前
龙仔发布了新的文献求助20
7秒前
wu发布了新的文献求助30
7秒前
可爱的函函应助你讲咩采纳,获得10
7秒前
sssshhh发布了新的文献求助10
7秒前
ccc发布了新的文献求助10
7秒前
7秒前
8秒前
大模型应助dove00采纳,获得10
8秒前
8秒前
8秒前
CipherSage应助lm0703采纳,获得30
8秒前
欢喜的酒窝完成签到,获得积分10
8秒前
8秒前
CHN发布了新的文献求助10
8秒前
9秒前
9秒前
领导范儿应助zxzhou18采纳,获得10
9秒前
漆柒完成签到,获得积分20
10秒前
10秒前
10秒前
Anlocia发布了新的文献求助10
10秒前
怀沙完成签到 ,获得积分10
10秒前
科研通AI6应助欢呼的艳采纳,获得10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546479
求助须知:如何正确求助?哪些是违规求助? 4632273
关于积分的说明 14626188
捐赠科研通 4573977
什么是DOI,文献DOI怎么找? 2507901
邀请新用户注册赠送积分活动 1484538
关于科研通互助平台的介绍 1455722