Pathology-interpretable radiomic model for predicting clinical outcome in patients with osteosarcoma: a retrospective, multicentre study

医学 骨肉瘤 免疫组织化学 回顾性队列研究 H&E染色 可解释性 活检 病理 放射科 内科学 人工智能 计算机科学
作者
Qiuping Ren,Xiao Zhang,Xuewei Wu,Heng Zhao,Yongxin Zhang,Yubin Yao,Yinping Leng,Xiaoyang Zhang,Yumeng Liu,Jijie Xiao,Wenwen Liu,Xia Xie,Nana Pei,Rongfang He,Na Tang,Ge Wen,Xiaodong Zhang,Shuixing Zhang,Bin Zhang
出处
期刊:Research Square - Research Square
标识
DOI:10.21203/rs.3.rs-4942890/v1
摘要

Abstract Background: Osteosarcoma is the most prevalent primary malignant bone tumor. Radiomic models demonstrate promise in globally evaluating the prognosis of osteosarcoma; however, they lack biological interpretability. We aimed to develop a radiomic model using MRI to predict disease-free Survival (DFS) in osteosarcoma patients, and to provide underlying pathobiology of the model. Methods: This retrospective study included 270 patients (training set, n=166; external test set 1, n=56; external test set 2, n=48) with surgically treated and histology-proven osteosarcoma from 14 tertiary centres. A total of 1130 radiomic features were extracted from pre-treatment MRI. After dimensionality reduction, radiomic model was built on the training set and tested on the external test sets. Radiomics interpretability study leveraged the Hematoxylin and eosin (H&E) and Immunohistochemistry (IHC) stained whole slide images (WSIs) of patients from the testing sets. Ten types of nuclear morphological features were extracted from each nucleus in H&E WSIs and aggregated into 150 patient-level features. Moreover, five immune- and hypoxia-related IHC biomarkers—CD3, CD8, CD68, FOXP3, and CAIX—were quantified from IHC WSIs. The correlation between the radiomic features and histopathologic biomarkers was assessed using Spearman correlation analysis. Results: The radiomic model including 12 features yielded a time-dependent AUC of 0.916 (95% CI: 0.893-0.939), 0.802 (95% CI: 0.763-0.840), and 0.895 (95% CI: 0.869-0.920) in the training set, external test set 1, and external test set 2, respectively. All 12 radiomic features exhibited significant correlations with 109-133 cellular features, totaling 1460 (81.1%) pairs. In detail, there were 574 pairs with absolute coefficient r (|r|) between 0 and 0.1, 516 pairs between 0.1 and 0.2, 241 pairs between 0.2 and 0.3, 99 pairs between 0.3 and 0.4, and 30 pairs exceeding 0.4. Six radiomic features were correlated with CAIX (|r| = 0.03-0.17), 10 features with CD3 (|r| = 0.02-0.71), eight features with CD8 (|r| = 0.05-0.42), nine features with FOXP3 (|r| = 0.01-0.55), 11 features with CD8 / FOXP3 ratio (|r| = 0.004-0.74), and 11 features with CD68 (|r| = 0.02-0.47). Conclusions: The MRI-based radiomic model effectively predicts DFS in osteosarcoma patients. The correlation strength between radiomic features and histopathologic biomarkers varies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
沐风发布了新的文献求助10
1秒前
慕青应助感动香薇采纳,获得10
1秒前
2秒前
Dongcong完成签到,获得积分0
2秒前
kkpzc完成签到 ,获得积分10
3秒前
4秒前
张杰完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助100
4秒前
8秒前
8秒前
777完成签到 ,获得积分10
8秒前
431564完成签到,获得积分20
10秒前
12秒前
浮游应助jcy11111采纳,获得10
12秒前
12秒前
共享精神应助DXB采纳,获得10
13秒前
西游发布了新的文献求助10
13秒前
ll发布了新的文献求助10
14秒前
11发布了新的文献求助10
14秒前
retosure完成签到 ,获得积分10
15秒前
华仔应助431564采纳,获得20
15秒前
Oying完成签到,获得积分10
16秒前
16秒前
今后应助辣子肉采纳,获得10
17秒前
mazhihao完成签到 ,获得积分10
17秒前
星辰大海应助小李采纳,获得10
17秒前
CodeCraft应助hhh采纳,获得10
18秒前
Oying发布了新的文献求助10
19秒前
李爱国应助程笑笑采纳,获得10
20秒前
阿喵在挖矿完成签到,获得积分20
20秒前
21秒前
小米粥发布了新的文献求助10
21秒前
量子星尘发布了新的文献求助150
21秒前
科研通AI6应助HARU123采纳,获得10
22秒前
dkjg完成签到 ,获得积分10
22秒前
23秒前
易渤超发布了新的文献求助10
24秒前
婧达令完成签到,获得积分10
24秒前
25秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5075694
求助须知:如何正确求助?哪些是违规求助? 4295434
关于积分的说明 13384434
捐赠科研通 4117167
什么是DOI,文献DOI怎么找? 2254723
邀请新用户注册赠送积分活动 1259361
关于科研通互助平台的介绍 1192085