Personalized Federated Continual Learning via Multi-Granularity Prompt

粒度 计算机科学 计算机体系结构 人工智能 操作系统
作者
Hao Yu,Xin Yang,Xin Gao,Yan Kang,Hao Wang,Junbo Zhang,Tianrui Li
标识
DOI:10.1145/3637528.3671948
摘要

Personalized Federated Continual Learning (PFCL) is a new practical scenario that poses greater challenges in sharing and personalizing knowledge. PFCL not only relies on knowledge fusion for server aggregation at the global spatial-temporal perspective but also needs model improvement for each client according to the local requirements. Existing methods, whether in Personalized Federated Learning (PFL) or Federated Continual Learning (FCL), have overlooked the multi-granularity representation of knowledge, which can be utilized to overcome Spatial-Temporal Catastrophic Forgetting (STCF) and adopt generalized knowledge to itself by coarse-to-fine human cognitive mechanisms. Moreover, it allows more effectively to personalized shared knowledge, thus serving its own purpose. To this end, we propose a novel concept called multi-granularity prompt, i.e., coarse-grained global prompt acquired through the common model learning process, and fine-grained local prompt used to personalize the generalized representation. The former focuses on efficiently transferring shared global knowledge without spatial forgetting, and the latter emphasizes specific learning of personalized local knowledge to overcome temporal forgetting. In addition, we design a selective prompt fusion mechanism for aggregating knowledge of global prompts distilled from different clients. By the exclusive fusion of coarse-grained knowledge, we achieve the transmission and refinement of common knowledge among clients, further enhancing the performance of personalization. Extensive experiments demonstrate the effectiveness of the proposed method in addressing STCF as well as improving personalized performance. Our code now is available at https://github.com/SkyOfBeginning/FedMGP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿茸与共完成签到,获得积分10
3秒前
4秒前
南西完成签到,获得积分10
4秒前
可爱的函函应助Math4396采纳,获得10
6秒前
6秒前
8秒前
8秒前
8秒前
9秒前
阿柴_Htao完成签到,获得积分10
9秒前
9秒前
科研通AI5应助Moeim Keller采纳,获得10
10秒前
11秒前
11秒前
adgn发布了新的文献求助10
11秒前
风yiya发布了新的文献求助10
12秒前
13秒前
仙林AK47完成签到,获得积分10
13秒前
天天快乐应助科研通管家采纳,获得10
13秒前
星辰大海应助科研通管家采纳,获得10
13秒前
13秒前
科研通AI5应助科研通管家采纳,获得30
13秒前
Hello应助科研通管家采纳,获得10
13秒前
张文博完成签到,获得积分10
14秒前
丘比特应助科研通管家采纳,获得10
14秒前
ZhouYW应助科研通管家采纳,获得10
14秒前
14秒前
大模型应助科研通管家采纳,获得20
14秒前
14秒前
汉堡包应助科研通管家采纳,获得30
14秒前
星辰大海应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
香蕉觅云应助科研通管家采纳,获得10
14秒前
共享精神应助科研通管家采纳,获得10
14秒前
14秒前
陈小司发布了新的文献求助10
14秒前
今后应助Huareyou采纳,获得10
14秒前
垃圾桶发布了新的文献求助30
15秒前
Hiker发布了新的文献求助10
15秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797758
求助须知:如何正确求助?哪些是违规求助? 3343236
关于积分的说明 10315046
捐赠科研通 3059985
什么是DOI,文献DOI怎么找? 1679200
邀请新用户注册赠送积分活动 806411
科研通“疑难数据库(出版商)”最低求助积分说明 763150