Research on robust decision making for intelligent connected vehicle at highway on-ramp

运输工程 计算机科学 汽车工程 工程类
作者
Huazhen Fang,Li Liu,Qing Gu,Xiaofeng Xiao,Yu Meng
标识
DOI:10.1177/09544070241281396
摘要

Reinforcement learning has demonstrated its potential in the decision-making field of autonomous driving. By engaging in trial-and-error learning and interacting with the environment, we can adapt our behavioral strategies based on reward and enhance driving decisions. Nevertheless, real-world vehicle decision-making involves intricate and diverse information, and the limited state information hinders agents from making optimal decisions, which may result in catastrophic consequences like collisions. Therefore, this paper proposes a robust deep reinforcement learning method based on the Soft Actor-Critic (SAC) algorithm for highway intelligent connected vehicle ramp merging decision-making. The model represents the vehicle features of the target lane and its adjacent lanes as an environmental state space. Additionally, a hybrid action space is designed, which combines discrete lateral actions and continuous longitudinal actions. Finally, an on-ramp simulation platform is built using actual roads and SUMO to verify the feasibility of the model. Multiple sets of comparative analysis experimental results demonstrate that the proposed method outperforms others in terms of the average reward return value, robustness value, collision rate, and success rate. Moreover, the model exhibits a stable lane change success rate under various road traffic density conditions, which indicates its robustness. The code can be obtained at https://github.com/ColinFanghz/sac-on-ramp.git .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕃薯叶应助zlkzyy采纳,获得10
1秒前
1秒前
香蕉觅云应助护理小白采纳,获得10
2秒前
阿斯披粼完成签到,获得积分10
2秒前
热情铭完成签到 ,获得积分10
2秒前
wxy发布了新的文献求助10
2秒前
吓我一跳完成签到,获得积分10
2秒前
淡定归尘完成签到,获得积分0
2秒前
文献完成签到,获得积分20
3秒前
3秒前
3秒前
李爱国应助lzb采纳,获得10
3秒前
lz完成签到,获得积分10
3秒前
丘比特应助ariaooo采纳,获得10
3秒前
yiyizhou发布了新的文献求助10
3秒前
3秒前
4秒前
Avvei完成签到,获得积分10
5秒前
彭于晏应助淡淡碧玉采纳,获得10
5秒前
我是老大应助热心的诗蕊采纳,获得10
5秒前
熊饼干完成签到,获得积分20
6秒前
爱笑夜蕾发布了新的文献求助10
6秒前
CC应助SYY采纳,获得10
6秒前
hujin完成签到,获得积分10
6秒前
7秒前
EVE完成签到,获得积分10
7秒前
清秀书桃完成签到,获得积分10
7秒前
WDD完成签到,获得积分10
7秒前
8秒前
郭宇完成签到 ,获得积分10
9秒前
wanci应助KerwinLLL采纳,获得10
9秒前
Henry发布了新的文献求助10
9秒前
10秒前
共享精神应助活力的果汁采纳,获得10
10秒前
勤恳怡发布了新的文献求助20
11秒前
IMxYang应助回忆里的大西瓜采纳,获得20
11秒前
林钟望发布了新的文献求助10
11秒前
11秒前
爱笑夜蕾完成签到,获得积分10
11秒前
烟花应助Geralt64采纳,获得10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
System of systems: When services and products become indistinguishable 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3813238
求助须知:如何正确求助?哪些是违规求助? 3357708
关于积分的说明 10387917
捐赠科研通 3074954
什么是DOI,文献DOI怎么找? 1689065
邀请新用户注册赠送积分活动 812546
科研通“疑难数据库(出版商)”最低求助积分说明 767177