Disentangled Dynamic Intrusion Detection

计算机科学 入侵检测系统 人工智能 模式识别(心理学) 计算机视觉 数据挖掘
作者
Chenyang Qiu,Guoshun Nan,Hongrui Xia,Zheng-Yu Weng,Xueting Wang,Meng Shen,Xiaofeng Tao,Jun Liu
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18
标识
DOI:10.1109/tpami.2025.3595671
摘要

Network-based intrusion detection system (NIDS) monitors network traffic for malicious activities, forming the frontline defense against increasing attacks over information infrastructures. Although promising, our quantitative analysis shows that existing methods perform inconsistently in attacks (e.g., 18% F1 for the MITM and 93% F1 for DDoS by a GCN-based state-of-the-art method), and perform poorly in few-shot intrusion detections (e.g., dramatically drops from 91% to 36% in 3D-IDS, and drops from 89% to 20% in E-GraphSAGE). We reveal that the underlying cause is entangled distributions of flow features. This motivates us to propose DIDS-MFL, a disentangled intrusion detection approach for various scenarios. DIDS-MFL involves two key components: a double Disentanglement-based Intrusion Detection System (DIDS) and a plug-and-play Multi-scale Few-shot Learning-based (MFL) intrusion detection module. Specifically, the proposed DIDS first disentangles traffic features by a non-parameterized optimization, automatically differentiating tens and hundreds of complex features. Such differentiated features will be further disentangled to highlight the attack-specific features. Our DIDS additionally uses a novel graph diffusion method that dynamically fuses the network topology for spatial-temporal aggregation in evolving data streams. Furthermore, the proposed MFL involves an alternating optimization framework to address the entangled representations in few-shot traffic threats with rigorous derivation. MFL first captures multi-scale information in latent space to distinguish attack-specific information and then optimizes the disentanglement term to highlight the attack-specific information. Finally, MFL fuses and alternately solves them in an end-to-end way. To the best of our knowledge, DIDS-MFL takes the first step toward disentangled dynamic intrusion detection under various attack scenarios. Equipped with DIDS-MFL, administrators can effectively identify various attacks in encrypted traffic, including known, unknown, and few-shot threats that are not easily detected. Comprehensive experiments show the superiority of our proposed DIDS-MFL. For few-shot NIDS, our DIDS-MFL achieves a 71.91% - 125.19% improvement in average F1-score over 14 baselines and shows versatility in multiple baselines and multiple tasks. Our code is available at https://github.com/qcydm/DIDS-MFL.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈帅行发布了新的文献求助10
1秒前
2秒前
2秒前
花痴的手套完成签到 ,获得积分10
2秒前
啥东西完成签到,获得积分10
4秒前
Sky完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
4466完成签到,获得积分10
5秒前
minever白完成签到,获得积分10
5秒前
吴谷杂粮发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
8秒前
8秒前
顺利一德发布了新的文献求助10
9秒前
10秒前
852应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得10
11秒前
不配.应助科研通管家采纳,获得20
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
852应助科研通管家采纳,获得10
11秒前
lcj1014发布了新的文献求助10
12秒前
Jerlly发布了新的文献求助30
12秒前
橘子发布了新的文献求助10
12秒前
所所应助月亮不说话采纳,获得10
12秒前
12秒前
nmamtf发布了新的文献求助50
13秒前
积极的雁风完成签到,获得积分10
14秒前
云辞忧发布了新的文献求助10
14秒前
14秒前
B1ackSugar发布了新的文献求助10
15秒前
16秒前
JamesPei应助陈呵呵采纳,获得10
17秒前
顺利一德完成签到,获得积分20
17秒前
18秒前
李健应助浅渊采纳,获得10
18秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Social Epistemology: The Niches for Knowledge and Ignorance 500
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4226418
求助须知:如何正确求助?哪些是违规求助? 3759800
关于积分的说明 11818881
捐赠科研通 3420997
什么是DOI,文献DOI怎么找? 1877608
邀请新用户注册赠送积分活动 930843
科研通“疑难数据库(出版商)”最低求助积分说明 838844