Identifying candidate genes for spermatogenic failure and predicting ICSI outcomes using single-cell RNA sequencing and protein–protein interaction networks

生物 计算生物学 基因 生物信息学 候选基因 转录组 机器学习 基因表达 遗传学 计算机科学
作者
Liu Liu,Shao Hui Huang,Feng Jiang,Guo-Qing Liang,Xiaobin Zhu,Hong Zhu,Weidong Tian
出处
期刊:Human Reproduction [Oxford University Press]
标识
DOI:10.1093/humrep/deaf186
摘要

How can integrating updated single-cell transcriptomics and protein-protein interactions (PPIs) with machine learning algorithms improve gene prioritization for spermatogenic failure and predict ICSI outcomes? A machine learning framework integrating single-cell RNA sequencing (scRNA-seq) and PPI networks efficiently identified 320 candidate genes for spermatogenic failure and achieved high precision in predicting ICSI outcomes (precision-recall (PRC)-AUC=0.96, 95% CI: 0.89-1.00; receiver operating characteristic (ROC)-AUC = 0.82, 95% CI: 0.63-0.97). Over 100 genes are implicated in spermatogenic failure, yet patients with distinct genetic backgrounds exhibit highly variable ICSI outcomes. While machine learning-based gene prioritization offers potential for novel gene discovery, the existing methods rely on bulk RNA sequencing or lack multi-omics integration, limiting their ability to leverage single-cell resolution or predict clinical outcomes. This study combined scRNA-seq data (capturing cell type- and developmental stage-specific expression) from healthy human tissues with PPI networks to train predictive models. Validation included 5-fold cross-validation, functional enrichment analyses, and clinical data from whole-exome sequencing (WES) and ICSI outcomes in 34 patients with spermatogenic failure subtypes (azoospermia, asthenozoospermia, teratozoospermia). Public datasets (Human Protein Atlas, STRING, Gene Expression Omnibus) provided scRNA-seq and PPI data. Node2Vec-derived PPI network embeddings and cell type- and developmental stage-specific expression features were used to train random forest classifiers. Gene Ontology, Mammalian Phenotype Ontology enrichment analyses, and WES of patient blood samples validated candidate genes and ICSI outcomes. Our models demonstrated robust performance in spermatogenic failure gene prediction (PRC-AUC = 0.88, 95% CI: 0.83-0.93; ROC-AUC = 0.98, 95% CI: 0.96-0.99), subtype classification (e.g. teratozoospermia, PRC-AUC = 0.96, 95% CI: 0.91-0.99; ROC-AUC = 0.94, 95% CI: 0.87-0.98), and ICSI outcome prediction (PRC-AUC = 0.96, 95% CI: 0.89-1.00; ROC-AUC = 0.82, 95% CI: 0.63-0.97). WES of patient samples revealed an increased detection rate of likely causative variants among a subset of model-predicted genes, rising from 11.8% to 29.4%, with clinical outcomes aligning with model predictions. Model limitations include training on literature-curated or database-annotated gene labels, which may introduce misclassification or annotation bias. Additionally, the absence of experimental validation and the limited size and diversity of external cohorts necessitate further verification. This integrative machine learning framework provides a powerful tool for uncovering genetic contributors to male infertility and predicting treatment outcomes, paving the way for improved diagnostic strategies and more informed clinical decision-making in reproductive medicine. This work was supported by the National Natural Science Foundation of China (32370719, 32170667), the Shanghai Municipal Science and Technology Major Project (2017SHZDZX01), and the National Key Research and Development Program of China (2021YFC2301503). The authors declare no competing interests. N/A.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助快乐采纳,获得10
1秒前
1秒前
可乐鸡翅发布了新的文献求助10
1秒前
望北完成签到 ,获得积分10
3秒前
3秒前
ZJ完成签到,获得积分10
4秒前
4秒前
科研通AI6应助曾经白山采纳,获得10
5秒前
6秒前
6秒前
Docgrace发布了新的文献求助10
7秒前
WIsh完成签到 ,获得积分10
7秒前
Yanglk发布了新的文献求助10
8秒前
情怀应助科研通管家采纳,获得10
8秒前
Dean应助科研通管家采纳,获得150
8秒前
浮游应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
上官若男应助科研通管家采纳,获得10
9秒前
Hello应助科研通管家采纳,获得10
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
丘比特应助科研通管家采纳,获得10
9秒前
顾矜应助科研通管家采纳,获得30
9秒前
9秒前
9秒前
9秒前
今后应助科研通管家采纳,获得10
9秒前
在水一方应助科研通管家采纳,获得10
9秒前
小蘑菇应助科研通管家采纳,获得10
10秒前
浮游应助科研通管家采纳,获得10
10秒前
Akim应助科研通管家采纳,获得10
10秒前
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
Criminology34应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
10秒前
LL发布了新的文献求助10
11秒前
浮游应助zorro3574采纳,获得10
11秒前
朱滨松完成签到,获得积分20
13秒前
着急的青枫应助quasar采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
A review of Order Plesiosauria, and the description of a new, opalised pliosauroid, Leptocleidus demoscyllus, from the early cretaceous of Coober Pedy, South Australia 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4850509
求助须知:如何正确求助?哪些是违规求助? 4149716
关于积分的说明 12855336
捐赠科研通 3897269
什么是DOI,文献DOI怎么找? 2142066
邀请新用户注册赠送积分活动 1161640
关于科研通互助平台的介绍 1061576