Machine Learning Model for Screening Thyroid Stimulating Hormone Receptor Agonists Based on Updated Datasets and Improved Applicability Domain Metrics

机器学习 计算机科学 人工智能 领域(数学分析) 甲状腺 计算生物学 生物 数学 医学 内科学 数学分析
作者
Wenjia Liu,Zhongyu Wang,Jingwen Chen,Weihao Tang,Haobo Wang
出处
期刊:Chemical Research in Toxicology [American Chemical Society]
卷期号:36 (6): 947-958 被引量:18
标识
DOI:10.1021/acs.chemrestox.3c00074
摘要

Machine learning (ML) models for screening endocrine-disrupting chemicals (EDCs), such as thyroid stimulating hormone receptor (TSHR) agonists, are essential for sound management of chemicals. Previous models for screening TSHR agonists were built on imbalanced datasets and lacked applicability domain (AD) characterization essential for regulatory application. Herein, an updated TSHR agonist dataset was built, for which the ratio of active to inactive compounds greatly increased to 1:2.6, and chemical spaces of structure–activity landscapes (SALs) were enhanced. Resulting models based on 7 molecular representations and 4 ML algorithms were proven to outperform previous ones. Weighted similarity density (ρs) and weighted inconsistency of activities (IA) were proposed to characterize the SALs, and a state-of-the-art AD characterization methodology ADSAL{ρs, IA} was established. An optimal classifier developed with PubChem fingerprints and the random forest algorithm, coupled with ADSAL{ρs ≥ 0.15, IA ≤ 0.65}, exhibited good performance on the validation set with the area under the receiver operating characteristic curve being 0.984 and balanced accuracy being 0.941 and identified 90 TSHR agonist classes that could not be found previously. The classifier together with the ADSAL{ρs, IA} may serve as efficient tools for screening EDCs, and the AD characterization methodology may be applied to other ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
通通通发布了新的文献求助10
刚刚
科研通AI2S应助sugar采纳,获得10
1秒前
kannar完成签到,获得积分10
1秒前
devin578632发布了新的文献求助10
3秒前
爆米花应助zhscu采纳,获得10
5秒前
Orange应助温柔雨柏采纳,获得30
6秒前
我是老大应助欢喜的手链采纳,获得10
6秒前
小乌龟完成签到 ,获得积分10
6秒前
超级笑南发布了新的文献求助10
6秒前
6秒前
zhangxinxin完成签到 ,获得积分10
8秒前
i_jueloa完成签到,获得积分10
10秒前
cfffff完成签到,获得积分10
10秒前
cuber完成签到 ,获得积分10
11秒前
Zzzzccc发布了新的文献求助10
12秒前
12秒前
超级笑南完成签到,获得积分10
14秒前
科研通AI5应助玉碎星采纳,获得10
14秒前
魏师完成签到,获得积分10
16秒前
16秒前
叶95完成签到 ,获得积分10
16秒前
hzh完成签到 ,获得积分10
16秒前
16秒前
安雯完成签到,获得积分10
16秒前
自由完成签到 ,获得积分10
16秒前
小二郎应助超级笑南采纳,获得10
18秒前
20秒前
动漫大师发布了新的文献求助10
20秒前
天天快乐应助科研通管家采纳,获得10
21秒前
大个应助科研通管家采纳,获得10
21秒前
所所应助科研通管家采纳,获得10
21秒前
顺心香菇应助科研通管家采纳,获得100
22秒前
机灵柚子应助科研通管家采纳,获得20
22秒前
22秒前
zhscu发布了新的文献求助10
22秒前
我是老大应助科研通管家采纳,获得10
22秒前
坚强雅绿应助科研通管家采纳,获得10
22秒前
坚强雅绿应助科研通管家采纳,获得10
22秒前
Orange应助科研通管家采纳,获得20
22秒前
李爱国应助科研通管家采纳,获得10
22秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Fashion Brand Visual Design Strategy Based on Value Co-creation 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777834
求助须知:如何正确求助?哪些是违规求助? 3323349
关于积分的说明 10214106
捐赠科研通 3038590
什么是DOI,文献DOI怎么找? 1667553
邀请新用户注册赠送积分活动 798161
科研通“疑难数据库(出版商)”最低求助积分说明 758290