RRCD—a pseudo-label semi-supervised network for medical image segmentation utilizing random region cropping as a data augmentation technique

作者
Jinfeng Wang,Xiangsuo Fan,Bingmei Sun,Xiaowei Song,Shaojun Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (11): 115701-115701
标识
DOI:10.1088/1361-6501/ae1995
摘要

Abstract Deep learning techniques have achieved remarkable performance in medical image segmentation through supervised methods; however, these methods require extensive data annotation, which is both time-consuming and labor-intensive. Although semi-supervised methods using consistency regularization and pseudo-labeling techniques have shown good performance in medical image segmentation, there are still issues with poor quality of pseudo-labels and excessive reliance on the quality of unlabeled data. To address this, this study proposes a pseudo-labeling framework based on random region cropping data augmentation. By enhancing the reliability of pseudo-label boundary regions through dual perturbations at both the model and structural levels, the network is forced to focus on the local-global contextual relationships of anatomical structures. Additionally, a dual-branch mean teacher architecture is constructed, using a shared encoder to extract common semantic representations from labeled and unlabeled data. A heterogeneous decoder introduces structured perturbations, compelling the model to learn a consistent semantic representation from a differentiated feature space, combined with a dynamic confidence threshold to achieve adaptive correction of noisy pseudo-labels. Experiments conducted on the ACDC cardiac magnetic resonance imaging and left atrium segmentation dataset reveal that when the proportion of labeled data decreases to 10%, the proposed method achieves Dice coefficients of 88.7% ± 1.2 and 89.3% ± 0.8. This represents an improvement of 3.9% and 4.2% over existing methods such as UAMT and DCT. Furthermore, the method presented in this paper also exhibits the best performance in semi-supervised segmentation with 20% labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ww驳回了追寻臻应助
2秒前
allezallez完成签到,获得积分10
2秒前
2秒前
zhangyuxue完成签到,获得积分20
3秒前
搜集达人应助小楚楚采纳,获得20
4秒前
531发布了新的文献求助20
5秒前
6秒前
在雨里思考完成签到,获得积分10
6秒前
霸气南珍发布了新的文献求助20
7秒前
量子星尘发布了新的文献求助10
7秒前
星辰大海应助乐观夜白采纳,获得10
9秒前
小马甲应助ke888采纳,获得30
10秒前
HL完成签到,获得积分10
10秒前
Robot完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
Guidong_Wang发布了新的文献求助10
11秒前
爆米花应助大帅采纳,获得10
11秒前
gao发布了新的文献求助10
11秒前
纹银完成签到,获得积分10
12秒前
云梦江海应助霸气南珍采纳,获得20
12秒前
苦柒完成签到,获得积分10
13秒前
科研通AI6.1应助zhangyuxue采纳,获得10
13秒前
俏皮的忆南完成签到,获得积分10
14秒前
落后鸭子完成签到,获得积分10
14秒前
14秒前
小二郎应助666采纳,获得10
15秒前
nongdaren关注了科研通微信公众号
16秒前
跳跃的千柳完成签到,获得积分10
16秒前
大方的笑萍完成签到 ,获得积分10
16秒前
18秒前
蜗牛星星发布了新的文献求助20
19秒前
19秒前
Owen应助小小檀健次采纳,获得30
20秒前
22秒前
22秒前
Demon724完成签到,获得积分10
22秒前
23秒前
Hello应助熙熙攘攘采纳,获得10
24秒前
大帅发布了新的文献求助10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5790663
求助须知:如何正确求助?哪些是违规求助? 5729938
关于积分的说明 15478160
捐赠科研通 4918280
什么是DOI,文献DOI怎么找? 2647572
邀请新用户注册赠送积分活动 1595134
关于科研通互助平台的介绍 1549697