RRCD—a pseudo-label semi-supervised network for medical image segmentation utilizing random region cropping as a data augmentation technique

作者
Jinfeng Wang,Xiangsuo Fan,Bingmei Sun,Xiaowei Song,Shaojun Chen
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (11): 115701-115701
标识
DOI:10.1088/1361-6501/ae1995
摘要

Abstract Deep learning techniques have achieved remarkable performance in medical image segmentation through supervised methods; however, these methods require extensive data annotation, which is both time-consuming and labor-intensive. Although semi-supervised methods using consistency regularization and pseudo-labeling techniques have shown good performance in medical image segmentation, there are still issues with poor quality of pseudo-labels and excessive reliance on the quality of unlabeled data. To address this, this study proposes a pseudo-labeling framework based on random region cropping data augmentation. By enhancing the reliability of pseudo-label boundary regions through dual perturbations at both the model and structural levels, the network is forced to focus on the local-global contextual relationships of anatomical structures. Additionally, a dual-branch mean teacher architecture is constructed, using a shared encoder to extract common semantic representations from labeled and unlabeled data. A heterogeneous decoder introduces structured perturbations, compelling the model to learn a consistent semantic representation from a differentiated feature space, combined with a dynamic confidence threshold to achieve adaptive correction of noisy pseudo-labels. Experiments conducted on the ACDC cardiac magnetic resonance imaging and left atrium segmentation dataset reveal that when the proportion of labeled data decreases to 10%, the proposed method achieves Dice coefficients of 88.7% ± 1.2 and 89.3% ± 0.8. This represents an improvement of 3.9% and 4.2% over existing methods such as UAMT and DCT. Furthermore, the method presented in this paper also exhibits the best performance in semi-supervised segmentation with 20% labeled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
dingm2完成签到 ,获得积分10
5秒前
轻松的笑容完成签到 ,获得积分10
5秒前
英俊的铭应助喜悦寄风采纳,获得10
6秒前
量子星尘发布了新的文献求助10
7秒前
CipherSage应助科研通管家采纳,获得10
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
7秒前
7秒前
酷波er应助科研通管家采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
领导范儿应助科研通管家采纳,获得10
7秒前
嘻嘻应助科研通管家采纳,获得10
7秒前
8秒前
寻道图强应助科研通管家采纳,获得150
8秒前
小黄人应助科研通管家采纳,获得10
8秒前
8秒前
Criminology34应助科研通管家采纳,获得10
8秒前
酷波er应助科研通管家采纳,获得30
8秒前
思源应助科研通管家采纳,获得30
8秒前
无花果应助科研通管家采纳,获得10
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
CipherSage应助科研通管家采纳,获得20
8秒前
8秒前
斯文败类应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得20
8秒前
隐形曼青应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
李爱国应助科研通管家采纳,获得10
9秒前
9秒前
Twonej应助科研通管家采纳,获得60
9秒前
YMing发布了新的文献求助10
9秒前
9秒前
Criminology34应助科研通管家采纳,获得10
9秒前
酷波er应助Cynthia采纳,获得10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Agyptische Geschichte der 21.30. Dynastie 2000
中国脑卒中防治报告 1000
Variants in Economic Theory 1000
Global Ingredients & Formulations Guide 2014, Hardcover 1000
Research for Social Workers 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5820601
求助须知:如何正确求助?哪些是违规求助? 5968395
关于积分的说明 15555499
捐赠科研通 4942352
什么是DOI,文献DOI怎么找? 2662014
邀请新用户注册赠送积分活动 1608209
关于科研通互助平台的介绍 1563168