材料科学
异质结
范德瓦尔斯力
电场
极化(电化学)
光电子学
吸收(声学)
电磁场
表面工程
电磁辐射
纳米技术
反射损耗
复合数
金属
氢
电磁学
反射(计算机编程)
电导率
电阻率和电导率
工程物理
电子
科技与社会
作者
Minhao Sheng,Xue Wang,Xiaoqing Bin,Liqian Huang,Ho Ngoc Nam,Lei Fu,Jun Zhou,Xiangyang Liu,Yingji Zhao,Wenxiu Que,Liying Zhang,Y. Yamauchi,Yusuke Asakura
标识
DOI:10.1002/adfm.202519423
摘要
ABSTRACT The development of high‐performance electromagnetic wave (EMW) absorption materials increasingly relies on the strategic design of multicomponent heterostructures. Herein, we constructed a flexible semiconductor/metal heterostructure consisting of oxygen‐vacancy‐engineered MoO 3‐x and MXene with metallic electrical conductivity. Leveraging van der Waals forces and hydrogen bonding, we integrated MoO 3‐x nanobelts with Ti 3 C 2 nanosheets to form stable and flexible films with tunable interfacial properties. This heterostructure induced a built‐in electric field (BIEF), significantly enhancing electron transfer. Experimental and theoretical analyses confirmed that the synergy of BIEF with oxygen vacancy defects, multi‐level scattering, and optimized conductivity drastically enhanced interfacial polarization and strengthened EMW attenuation. The optimized MoO 3‐x /2MXene composite exhibited superior EMW absorption, achieving a minimum reflection loss ( RL min ) of −62.7 dB at 7.8 GHz with an effective absorption bandwidth ( EAB ) of 6.8 GHz. These findings delivered critical insights on understanding and improving interfacial effects for EMW absorption, while also establishing a promising platform for the engineering of heterointerfaces in customized 2D flexible layered structures.
科研通智能强力驱动
Strongly Powered by AbleSci AI