材料科学
电解质
阴极
离子键合
导线
电导率
离子电导率
锂(药物)
电化学
导电体
快离子导体
溶解度
离子
金属
电阻率和电导率
电子
电化学窗口
化学物理
同种类的
化学工程
兴奋剂
无机化学
碱金属
复合数
金属锂
电子空穴
溶解
电极
电子结构
电池(电)
作者
Xiangkun Kong,Zongzi Jin,Linwang Chen,Xianzhun Huang,Bingzi Feng,Huang Huang,Yifan Xu,Wei-Hao Wu,Wenkan Yang,Shiji Shen,Zhiwen Zhuo,Weiwei Ping,Ranran Peng,Chu-sheng Chen,Chengwei Wang
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2025-11-12
卷期号:11 (46)
标识
DOI:10.1126/sciadv.adw4710
摘要
Both electron and ion transports determine the dynamics of the cathode in all solid–state lithium metal batteries (ASSLMBs). Traditional composite strategies combining solid electrolytes and electronic conductors cause complex solid-state interfaces that hinder carrier migration. We present a high-entropy mixed ionic and electronic conductor (HE-O-MIEC), Li 1/6-x (LaPrNdSrBa) 1/6 CoO 3-δ , based on oxidation-resistant electronic conductors. HE-O-MIEC exhibits an electronic conductivity of 1150 siemens per centimeter and a Li + conductivity of 2.3 × 10 −4 siemens per centimeter at room temperature. The enhanced Li + conductivity is attributed to the large configurational entropy, promoting multicomponent solubility and increased Li + concentration. HE-O-MIEC exhibits electrochemical and thermodynamic compatibility with LiCoO 2 and stabilizes ion/electron transport in the ASSLMB using the Li 6.4 La 3 Zr 1.4 Ta 0.6 O 12 electrolyte. Without organic electrolyte or additional pressure, the ASSLMB achieves 115–milliampere·hours per gram initial discharge capacity at 30°C and retains 83% capacity after 500 cycles. Homogeneous electron and ion transport in the HE-O-MIEC demonstrates potential to improve active material utilization and address interfacial challenges in ceramic-based ASSLMBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI