超分子化学
结晶
材料科学
纳米技术
肽
分子动力学
超分子组装
合理设计
功能多样性
自组装
能源景观
多态性(计算机科学)
原子力显微镜
纳米尺度
生物物理学
结晶学
化学物理
机制(生物学)
晶体工程
分子构象
量子
过程(计算)
量子点
形态学(生物学)
作者
Yan Zhang,Tong Pan,Sarah Guerin,Jiahao Zhang,Yiming Tang,Zengfeng Qiu,Qi Li,Zhang Jiaojiao,Feng Wei,Jiqian Wang,Rusen Yang,Deqing Mei,Damien Thompson,Guanghong Wei,Hai Xu,Kai Tao
出处
期刊:Small
[Wiley]
日期:2025-11-11
卷期号:: e10542-e10542
标识
DOI:10.1002/smll.202510542
摘要
Abstract Crystallized peptide assemblies have demonstrated useful physicochemical and electromechanical features due to the highly ordered supramolecular packing driven by efficient and extensive non‐covalent interactions. However, the structural polymorphism of the bioinspired self‐assemblies poses challenges for their rational design and scale production as sustainable, eco‐friendly, and tailorable materials for technology applications. Here, it is demonstrated that peptide polymorphic crystallization is a hierarchical process, evolving from initially flexible, twisted nanofibrils bundling to form ribbons, then ripening to robust, plate‐like crystals composed of superhelices, as observed using high‐resolution microscopy and crystallography supported by molecular dynamics simulations and quantum mechanical calculations. The hierarchical process accounts for the known morphological diversity of peptide crystals and provides a mechanism of controllably restricting the assembly to create only specific supramolecular structures as demanded. Especially, the superhelical organization enables high‐efficiency energy transformation, resulting in tremendous photoluminescent, optical waveguiding, and electromechanical energy‐harvesting potential. These findings endorse the feasibility of connecting the bioinspired flexible aggregations and robust crystallizations.
科研通智能强力驱动
Strongly Powered by AbleSci AI