Can domain knowledge benefit machine learning for concrete property prediction?

计算机科学 机器学习 稳健性(进化) 概化理论 人工智能 领域知识 财产(哲学) 外推法 成对比较 领域(数学分析) 过程(计算) 数据挖掘 数据科学 操作系统 数学分析 哲学 认识论 统计 化学 基因 生物化学 数学
作者
Zhanzhao Li,Te Pei,Weichao Ying,Wil V. Srubar,Rui Zhang,Jinyoung Yoon,Hailong Ye,Ismaïla Dabo,Aleksandra Radlińska
出处
期刊:Journal of the American Ceramic Society [Wiley]
卷期号:107 (3): 1582-1602 被引量:13
标识
DOI:10.1111/jace.19549
摘要

Abstract Understanding and predicting process–structure–property–performance relationships for concrete materials is key to designing resilient and sustainable infrastructure. While machine learning has emerged as a powerful tool to supplement empirical analysis and physical modeling, its capabilities are yet to be fully realized due to the massive data requirements and generalizability challenges. To address these limitations, we propose a knowledge‐informed machine learning framework for concrete property prediction that aggregates the wealth of domain knowledge condensed in empirical formulas and physics‐based models. By integrating the knowledge through data augmentation, feature enhancement, and model pre‐training, we demonstrate that this framework has the potential to (i) accelerate model convergence, (ii) improve model performance with limited training data, and (iii) increase generalizability to real‐world scenarios (including extrapolation capability to other datasets and robustness against data outliers). The overall improvement of machine learning models by knowledge integration is particularly critical when these models are scaled up to tackle the increasing complexity of modern concrete and deployed in practical applications. While demonstrated for predicting concrete strength, this versatile framework is applicable to a wide range of properties of concrete and other composite materials, paving the way for accelerated materials design and discovery.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11111完成签到,获得积分10
1秒前
1秒前
可爱的函函应助勤奋夏兰采纳,获得10
2秒前
研友_VZG7GZ应助Nov采纳,获得10
2秒前
阿豪发布了新的文献求助10
2秒前
FASEA发布了新的文献求助10
2秒前
3秒前
SciGPT应助谨慎朝雪采纳,获得10
4秒前
pliciyir发布了新的文献求助10
4秒前
4秒前
5秒前
scfsl发布了新的文献求助10
5秒前
5秒前
6秒前
8秒前
9秒前
10秒前
10秒前
CHUAN发布了新的文献求助10
10秒前
10秒前
英俊的铭应助pliciyir采纳,获得10
11秒前
11秒前
sonder发布了新的文献求助10
11秒前
研友_VZG7GZ应助zxy采纳,获得10
12秒前
cx发布了新的文献求助10
13秒前
EXUSIAI发布了新的文献求助10
14秒前
15秒前
15秒前
17秒前
量子星尘发布了新的文献求助10
19秒前
充电宝应助拼搏书采纳,获得10
19秒前
老马发布了新的文献求助30
20秒前
20秒前
20秒前
这样说话完成签到 ,获得积分10
21秒前
22秒前
22秒前
22秒前
打打应助seashell采纳,获得10
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547820
求助须知:如何正确求助?哪些是违规求助? 4633277
关于积分的说明 14630201
捐赠科研通 4574847
什么是DOI,文献DOI怎么找? 2508654
邀请新用户注册赠送积分活动 1484986
关于科研通互助平台的介绍 1456049