Twin Graph-based Anomaly Detection via Attentive Multi-Modal Learning for Microservice System

计算机科学 异常检测 模式 图形 人工智能 特征学习 源代码 数据挖掘 机器学习 理论计算机科学 社会科学 社会学 操作系统
作者
Jun Huang,Yang Yang,Hang Yu,Jianguo Li,Xiao Zheng
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2310.04701
摘要

Microservice architecture has sprung up over recent years for managing enterprise applications, due to its ability to independently deploy and scale services. Despite its benefits, ensuring the reliability and safety of a microservice system remains highly challenging. Existing anomaly detection algorithms based on a single data modality (i.e., metrics, logs, or traces) fail to fully account for the complex correlations and interactions between different modalities, leading to false negatives and false alarms, whereas incorporating more data modalities can offer opportunities for further performance gain. As a fresh attempt, we propose in this paper a semi-supervised graph-based anomaly detection method, MSTGAD, which seamlessly integrates all available data modalities via attentive multi-modal learning. First, we extract and normalize features from the three modalities, and further integrate them using a graph, namely MST (microservice system twin) graph, where each node represents a service instance and the edge indicates the scheduling relationship between different service instances. The MST graph provides a virtual representation of the status and scheduling relationships among service instances of a real-world microservice system. Second, we construct a transformer-based neural network with both spatial and temporal attention mechanisms to model the inter-correlations between different modalities and temporal dependencies between the data points. This enables us to detect anomalies automatically and accurately in real-time. The source code of MSTGAD is publicly available at https://github.com/alipay/microservice_system_twin_graph_based_anomaly_detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李爱国应助zang小白采纳,获得10
刚刚
2秒前
3秒前
ding应助Lili采纳,获得10
4秒前
lhnsisi发布了新的文献求助10
4秒前
cym完成签到,获得积分10
5秒前
5秒前
无花果应助科研通管家采纳,获得10
6秒前
大模型应助科研通管家采纳,获得30
7秒前
共享精神应助科研通管家采纳,获得10
7秒前
SciGPT应助科研通管家采纳,获得10
7秒前
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
科目三应助科研通管家采纳,获得10
7秒前
andrele应助科研通管家采纳,获得40
7秒前
隐形曼青应助科研通管家采纳,获得10
7秒前
一壶古酒应助科研通管家采纳,获得30
7秒前
科研通AI6应助科研通管家采纳,获得10
7秒前
深情安青应助科研通管家采纳,获得10
7秒前
顾矜应助科研通管家采纳,获得10
7秒前
丘比特应助科研通管家采纳,获得10
7秒前
BowieHuang应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
8秒前
8秒前
8秒前
DASHU发布了新的文献求助10
8秒前
8秒前
光亮冬寒发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
12秒前
12秒前
橘子发布了新的文献求助10
14秒前
15秒前
怕黑的擎发布了新的文献求助10
16秒前
lhnsisi完成签到,获得积分10
16秒前
16秒前
依旧发布了新的文献求助10
16秒前
雪白语海完成签到,获得积分10
16秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599144
求助须知:如何正确求助?哪些是违规求助? 4684566
关于积分的说明 14835651
捐赠科研通 4666279
什么是DOI,文献DOI怎么找? 2537734
邀请新用户注册赠送积分活动 1505151
关于科研通互助平台的介绍 1470728