Technology licensing contract design considering royalty transparency and demand information asymmetry with downstream co-opetition

被许可人 信息不对称 业务 不可见的 产业组织 透明度(行为) 下游(制造业) 许可证 微观经济学 计算机科学 营销 经济 财务 计算机安全 操作系统 计量经济学
作者
Xiufeng Li,Bo Li,Ruxiao Xing
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122183-122183 被引量:6
标识
DOI:10.1016/j.eswa.2023.122183
摘要

This paper studies how technology suppliers can optimally design licensing contracts when there is incomplete information on the licensee's demand potential for the product in a high-technology supply chain. A licensing contract typically contains an up-front payment and royalties on product sales. The licensor decides to license one technology to a licensee, which designs products based on the supplier's technology and outsources the product manufacturing to a competitive downstream manufacturer. We apply principal-agent models to formulate the licensor's contracting problem while considering the transparency of the licensing royalty and find that under demand information asymmetry, the optimal contract structure changes with the demand potential. More specifically, both the separating and pooling strategies can be the optimal strategies for the licensor under the observable contract case. Conversely, under the unobservable case, only the separating strategy is the optimal licensing strategy. And the licensor can always charge zero royalty to a high-type design firm regardless of the menu strategy or the single contract. Furthermore, we examine the effect of licensing royalty transparency on licensing decisions and firms' profits and highlight the effect of downstream competition on the licensor's profit. Our results show that the licensor can be better off in the observable contract case. By contrast, the design firm may be better off in the unobservable contract case. We provide a rationale for the licensing contract design under demand information asymmetry and further shed light on the choice between public and secret licensing terms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贝博完成签到,获得积分10
刚刚
呐呐完成签到,获得积分10
1秒前
小马驹完成签到,获得积分20
1秒前
动听靖完成签到 ,获得积分10
1秒前
困敦发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
hongdongxiang完成签到,获得积分20
2秒前
lxy完成签到,获得积分10
2秒前
3秒前
xxxxx发布了新的文献求助10
3秒前
小马驹发布了新的文献求助10
3秒前
3秒前
哭泣的翠丝完成签到,获得积分10
3秒前
脑洞疼应助Khr1stINK采纳,获得10
4秒前
4秒前
苗条映菱完成签到,获得积分10
4秒前
响铃发布了新的文献求助10
5秒前
文文发布了新的文献求助30
6秒前
顾矜应助Zzong采纳,获得10
6秒前
7秒前
striver0112发布了新的文献求助10
7秒前
完美世界应助咕咕唧唧采纳,获得10
7秒前
田様应助鲸落采纳,获得10
7秒前
十五发布了新的文献求助10
7秒前
科研通AI5应助二指弹采纳,获得10
8秒前
8秒前
大模型应助琪琪子采纳,获得10
8秒前
nanda完成签到,获得积分0
8秒前
欢喜可愁给欢喜可愁的求助进行了留言
9秒前
10秒前
张张爱科研完成签到,获得积分10
10秒前
情怀应助MOMO采纳,获得10
10秒前
10秒前
10秒前
今后应助鳗鱼绿蝶采纳,获得10
10秒前
青檀完成签到,获得积分10
11秒前
无花果应助Yana1311采纳,获得10
11秒前
11秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834587
求助须知:如何正确求助?哪些是违规求助? 3377081
关于积分的说明 10496404
捐赠科研通 3096557
什么是DOI,文献DOI怎么找? 1705041
邀请新用户注册赠送积分活动 820414
科研通“疑难数据库(出版商)”最低求助积分说明 772031