A dual-branch siamese spatial-spectral transformer attention network for Hyperspectral Image Change Detection

高光谱成像 计算机科学 人工智能 模式识别(心理学) 像素 变压器 卷积神经网络 特征提取 物理 量子力学 电压
作者
Yiyan Zhang,Tingting Wang,Chenkai Zhang,Shufang Xu,Hongmin Gao,Chenming Li
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122125-122125 被引量:5
标识
DOI:10.1016/j.eswa.2023.122125
摘要

The convolutional neural networks have recently gained widespread attention in Hyperspectral Image Change Detection (HSI-CD) due to their outstanding feature extraction ability. However, limited by the inherent network backbones, the convolutional neural networks (CNNs) fail to mine the sequence attributes and model the intricate relationships of spectral signatures. In contrast, transformers are proficient at learning sequence information owing to the powerful self-attention mechanisms. The two backbone structures exhibit complementary spatial and spectral feature extraction strengths, respectively. Inspired by this, we propose a dual-branch siamese spatial–spectral transformer attention network (DBS3TAN) for HSI-CD. The main idea is to fully exploit the advantages of CNNs and transformers for spatial and spectral feature extraction. More importantly, we devise the two key modules, i.e., the spatial attention module and the spatial–spectral transformer module. The former utilizes depthwise separable convolutions and attention mechanisms to emphasize the features of dual-temporal HSIs from the spatial perspective. The latter focuses on the sequence attributes of spectral signatures and mines the spatial characteristics from adjacent pixels. We employ the weighted contrastive loss function to separate the changed and unchanged pixels more reliably and set the random weight factors to balance the contributions of the two branches. Finally, the threshold values judgment is used to obtain the ultimate detection maps. We conduct extensive experiments to evaluate the DBS3TAN on three HSI datasets, demonstrating its superior performances than compared methods qualitatively and quantitatively. The source code will be available at https://github.com/zhangyiyan001/DBS3TAN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kkt发布了新的文献求助10
刚刚
刚刚
所所应助ZhenyuLiu采纳,获得10
1秒前
99ldt发布了新的文献求助10
1秒前
赤木发布了新的文献求助10
1秒前
Ricochet发布了新的文献求助10
1秒前
2秒前
wsf2023发布了新的文献求助30
3秒前
3秒前
彭于彦祖应助dy采纳,获得20
4秒前
wqc2060发布了新的文献求助10
5秒前
5秒前
Ricochet完成签到,获得积分10
6秒前
科研通AI5应助武勇采纳,获得30
7秒前
9秒前
sanjin发布了新的文献求助10
9秒前
99ldt完成签到,获得积分20
11秒前
数据线发布了新的文献求助10
12秒前
细心枫叶发布了新的文献求助10
13秒前
怕孤独的自行车完成签到,获得积分10
13秒前
默默白开水完成签到 ,获得积分10
14秒前
14秒前
可靠的青发布了新的文献求助10
15秒前
17秒前
沐晨浠完成签到,获得积分10
20秒前
东华帝君完成签到,获得积分10
20秒前
20秒前
彭于晏应助牧童采纳,获得10
21秒前
可靠的青完成签到,获得积分10
21秒前
景雪航发布了新的文献求助10
22秒前
22秒前
毛脸雷公嘴完成签到,获得积分10
25秒前
25秒前
hj发布了新的文献求助10
26秒前
Ava应助细心枫叶采纳,获得10
26秒前
27秒前
含糊的凤灵完成签到,获得积分10
28秒前
lune发布了新的文献求助10
28秒前
cuddly完成签到 ,获得积分10
30秒前
30秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835028
求助须知:如何正确求助?哪些是违规求助? 3377526
关于积分的说明 10498888
捐赠科研通 3097008
什么是DOI,文献DOI怎么找? 1705417
邀请新用户注册赠送积分活动 820558
科研通“疑难数据库(出版商)”最低求助积分说明 772123