Frequency-domain MLPs are More Effective Learners in Time Series Forecasting

计算机科学 感知器 频域 瓶颈 人工智能 机器学习 钥匙(锁) 数据挖掘 依赖关系(UML) 系列(地层学) 人工神经网络 计算机视觉 计算机安全 生物 嵌入式系统 古生物学
作者
Kun Yi,Qi Zhang,Wei Fan,Shoujin Wang,Pengyang Wang,Hui He,Defu Lian,Ning An,Longbing Cao,Zhendong Niu
出处
期刊:Cornell University - arXiv 被引量:70
标识
DOI:10.48550/arxiv.2311.06184
摘要

Time series forecasting has played the key role in different industrial, including finance, traffic, energy, and healthcare domains. While existing literatures have designed many sophisticated architectures based on RNNs, GNNs, or Transformers, another kind of approaches based on multi-layer perceptrons (MLPs) are proposed with simple structure, low complexity, and {superior performance}. However, most MLP-based forecasting methods suffer from the point-wise mappings and information bottleneck, which largely hinders the forecasting performance. To overcome this problem, we explore a novel direction of applying MLPs in the frequency domain for time series forecasting. We investigate the learned patterns of frequency-domain MLPs and discover their two inherent characteristic benefiting forecasting, (i) global view: frequency spectrum makes MLPs own a complete view for signals and learn global dependencies more easily, and (ii) energy compaction: frequency-domain MLPs concentrate on smaller key part of frequency components with compact signal energy. Then, we propose FreTS, a simple yet effective architecture built upon Frequency-domain MLPs for Time Series forecasting. FreTS mainly involves two stages, (i) Domain Conversion, that transforms time-domain signals into complex numbers of frequency domain; (ii) Frequency Learning, that performs our redesigned MLPs for the learning of real and imaginary part of frequency components. The above stages operated on both inter-series and intra-series scales further contribute to channel-wise and time-wise dependency learning. Extensive experiments on 13 real-world benchmarks (including 7 benchmarks for short-term forecasting and 6 benchmarks for long-term forecasting) demonstrate our consistent superiority over state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪乘风完成签到 ,获得积分10
1秒前
LW完成签到,获得积分20
1秒前
1秒前
小悦子发布了新的文献求助10
1秒前
潘宇霜发布了新的文献求助10
2秒前
2秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
Owen应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
changping应助科研通管家采纳,获得150
4秒前
浮游应助科研通管家采纳,获得10
4秒前
ding应助科研通管家采纳,获得30
4秒前
浮游应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
4秒前
浮游应助科研通管家采纳,获得10
4秒前
4秒前
hemengwen应助科研通管家采纳,获得10
4秒前
5秒前
科研通AI6应助整齐荟采纳,获得10
5秒前
无花果应助机智的皮皮虾采纳,获得10
6秒前
6秒前
善学以致用应助123采纳,获得10
6秒前
6秒前
7秒前
Hello应助煎饼狗子采纳,获得10
7秒前
肸子完成签到,获得积分10
7秒前
Ava应助Kiki采纳,获得10
8秒前
8秒前
微笑语山发布了新的文献求助10
8秒前
科研通AI6应助skywalker采纳,获得10
8秒前
kingwill应助waihang采纳,获得20
8秒前
zzzp发布了新的文献求助10
9秒前
9秒前
优乐美发布了新的文献求助10
9秒前
Catfish完成签到,获得积分10
9秒前
xiaoying完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5073933
求助须知:如何正确求助?哪些是违规求助? 4294077
关于积分的说明 13380382
捐赠科研通 4115460
什么是DOI,文献DOI怎么找? 2253658
邀请新用户注册赠送积分活动 1258414
关于科研通互助平台的介绍 1191257