Text classification with improved word embedding and adaptive segmentation

文字2vec 计算机科学 词(群论) 人工智能 文字嵌入 嵌入 文本分割 分割 序列(生物学) 集合(抽象数据类型) 模式识别(心理学) 滤波器(信号处理) 语音识别 数学 生物 遗传学 程序设计语言 计算机视觉 几何学
作者
Guoying Sun,Yanan Cheng,Zhaoxin Zhang,Xiaojun Tong,Tingting Chai
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 121852-121852 被引量:2
标识
DOI:10.1016/j.eswa.2023.121852
摘要

Text classification first needs to convert the text into embedding vectors. Considering that static word embedding models such as Word2vec do not consider the position information of word and the difference of its role in different documents, while dynamic word embedding models such as Bert consume a large amount of time. An improved word embedding model based on pre-trained Word2vec is proposed, which achieves better classification accuracy and much lower classification time than Bert. At first, the concept of Term Document Frequency (TDF) is proposed on the basis of TF-IDF, and the TF-IDF-TDF of each word in different documents is calculated. Then, The positional encoding is added. Finally, in order to reduce the misleading of words with low importance, a filter is designed to set the embedding vector with low importance to zero. Considering that the sequence length that the deep learning model can handle is limited, and the text sequence exceeding the Maximum Sequence Length (MSL) set by the deep learning model will be directly truncated and discarded, an adaptive segmentation model is proposed, which can set different segmentation strategies for different texts according to the length of the text and the MSL. In order to maintain the continuity of adjacent text after segmentation, an adjacent-segment-vector-attended co-attention network is designed. In addition, the multi-channel convolution and the capsule network are designed to further extract deep hidden features. Multiple comparative experiment results show that the proposed model achieves the best Accuracy and Micro-F1 on five long text baseline datasets and six short text baseline datasets. In addition, when the MSL is not set too large compared with the document length in the dataset, the classification results of the proposed model are not affected by it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
谈笑间应助MIku采纳,获得10
2秒前
3秒前
彭于晏应助与光同尘采纳,获得10
3秒前
3秒前
4秒前
Jack发布了新的文献求助10
5秒前
谈笑间应助朴素海亦采纳,获得10
5秒前
FelixChen应助路人甲采纳,获得10
5秒前
6秒前
6秒前
7秒前
Orange应助赵楠采纳,获得10
7秒前
丘比特应助嘻嘻采纳,获得10
7秒前
笨笨芯发布了新的文献求助10
8秒前
你怎么这么可爱啊完成签到,获得积分10
8秒前
9秒前
科研通AI5应助宇文向雪采纳,获得10
9秒前
9秒前
juno发布了新的文献求助10
10秒前
arcadia完成签到 ,获得积分10
11秒前
11秒前
a3979107完成签到,获得积分10
11秒前
11秒前
酷波er应助笨笨芯采纳,获得30
11秒前
11秒前
rosee发布了新的文献求助10
12秒前
zzzmmmhhh完成签到 ,获得积分20
12秒前
13秒前
枫叶的脚步完成签到,获得积分10
13秒前
西兰完成签到,获得积分10
13秒前
祝余驳回了Jasper应助
13秒前
天天快乐应助MSYzack采纳,获得10
14秒前
科研通AI5应助MSYzack采纳,获得10
14秒前
孙玮应助MSYzack采纳,获得10
14秒前
NexusExplorer应助MSYzack采纳,获得10
14秒前
skier发布了新的文献求助10
15秒前
DTkunkun发布了新的文献求助10
17秒前
jiyuan完成签到,获得积分10
18秒前
科研通AI5应助judy采纳,获得10
18秒前
18秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799862
求助须知:如何正确求助?哪些是违规求助? 3345153
关于积分的说明 10323869
捐赠科研通 3061736
什么是DOI,文献DOI怎么找? 1680492
邀请新用户注册赠送积分活动 807113
科研通“疑难数据库(出版商)”最低求助积分说明 763462