脆性
油页岩
各向异性
地质学
岩土工程
覆岩压力
床
材料科学
复合材料
古生物学
物理
量子力学
作者
Guokai Zhao,Yintong Guo,Chunhe Yang,Lei Wang,Wuhao Guo,Hanzhi Yang,Xiaolong Wu,Hejuan Liu
标识
DOI:10.1016/j.ijrmms.2023.105536
摘要
The safe and efficient development of ultra-deep shale gas deeper than 4500 m is closely related to the comprehensive evaluation of the mechanical behavior, brittleness and anisotropy characteristics of reservoir rocks under in-situ stress conditions. However, the above-mentioned information about ultra-deep shale is rarely reported. This study aims to fill this gap by systematically investigating the mechanical and anisotropic characteristics of cores, with 0° and 90° bedding orientations, from different layers in the vertical depth of 4900–4930 m, under confining pressure of 110 MPa. Furthermore, a new brittleness index with three parts related to brittle failure, i.e., the energy storage performance in the pre-peak stage, the performance of elastic energy used to maintain the post-peak failure, and the severity of the energy released during the post-peak stage, all of which are physically meaningful, was proposed. Subsequently, the index was validated and applied to the brittleness evaluation of ultra-deep reservoir rocks. The brittleness was evaluated in the following descending order: black shale of Longmaxi Formation > gray-black shale of Wufeng Formation > limestone of Baota Formation. Overall, the Wufeng- Longmaxi Formation shale still exhibits brittle failure under such high confining pressure, while the Baota Formation limestone exhibits quasi-ductile failure, which is consistent with the phenomenological behavior of cores. Further, various experimental techniques have been employed to study the brittle and quasi-ductile failure mechanisms of reservoir rocks. The anisotropy evaluation results show that the anisotropy degree of the mechanical and brittleness parameters corresponding to the deep formation is significantly lower than that of the shallow formation. The anisotropy degree of strength and deformation parameters (Young's modulus, Poisson's ratio) is closely related to the content of quartz and clay minerals, respectively. The above results are expected to provide data support and theoretical guidance for the development of deep and ultra-deep shale gas in the southern Sichuan region of China.
科研通智能强力驱动
Strongly Powered by AbleSci AI