Improving the safety performance of LiNi0.5Mn1.5O4 through strategies of doping, coating and oxygen self-absorption additive

材料科学 电化学 化学工程 阴极 石墨烯 涂层 尖晶石 兴奋剂 热稳定性 氧化物 氧气储存 氧气 无机化学 电极 纳米技术 化学 有机化学 冶金 光电子学 物理化学 工程类
作者
Jingjun Liu,Mingliang Yuan,Huiyang Liu,Zhen Li,Lianghua Wang,Junqing Yan,Jing Peng,Shengwen Ou,Jing Xu
出处
期刊:Journal of Power Sources [Elsevier]
卷期号:591: 233840-233840
标识
DOI:10.1016/j.jpowsour.2023.233840
摘要

By employing a modification strategy that involves Mg2+ doping and Cu coating on the LiNi0.5Mn1.5O4 (LNMO) cathode material, along with a composite of zeolite and graphene as an additive in conductive carbon black, we successfully develop multifunctional cathode materials with internal oxygen self-absorption capabilities. We conduct various tests, including morphology and structure analysis, oxygen release and absorption evaluation, weight loss examination, and electrochemical performance assessment, on the prepared samples. Results reveal that Mg2+ doping restrains the release of lattice oxygen from LNMO materials, thereby enhancing their structural stability. Cu coating and additives play a crucial role in absorbing released oxygen, preventing combustion, and inhibiting side reactions. The micropores of zeolite in the additive adsorb and immobilize gas molecules, reducing the release and diffusion of pyrolysis products, which exhibit flame retardancy properties. Additionally, the presence of graphene, as a highly conductive material, further improves the electrochemical performance of the cathode material. Remarkably, even after 500 cycles at a 1C rate, the modified cathode material with additives maintains a capacity of 115.03mAh⋅g−1 (93.29 % capacity retention). Overall, the demonstrated spinel-type cathode materials exhibit exceptional structural stability, thermal stability, and electrochemical performance, making them promising candidates for advanced lithium-ion batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
端庄的墨镜完成签到,获得积分10
2秒前
2秒前
慕青应助能量球采纳,获得10
2秒前
2秒前
3秒前
hatt完成签到 ,获得积分10
4秒前
4秒前
4秒前
适逢发布了新的文献求助200
6秒前
dcx发布了新的文献求助10
6秒前
苏幕遮发布了新的文献求助10
6秒前
Cactus应助清风采纳,获得10
6秒前
7秒前
大兵哥发布了新的文献求助10
7秒前
8秒前
HR完成签到,获得积分10
8秒前
甜甜的大米完成签到,获得积分10
8秒前
小马甲应助重要的清采纳,获得10
9秒前
坦率的友灵完成签到,获得积分10
9秒前
9秒前
9秒前
Maestro_S应助suwu采纳,获得10
10秒前
帅气的襄发布了新的文献求助10
10秒前
老衲法号嘿嘿嘿完成签到,获得积分10
10秒前
dcx完成签到,获得积分10
12秒前
庙庙发布了新的文献求助10
12秒前
12秒前
小马甲应助shen采纳,获得10
13秒前
jacs111完成签到,获得积分10
13秒前
小二郎应助木木夕采纳,获得10
14秒前
SPQR发布了新的文献求助10
14秒前
静jing完成签到 ,获得积分20
14秒前
Liang完成签到,获得积分10
15秒前
15秒前
飞快的鼠标完成签到,获得积分10
15秒前
16秒前
16秒前
酸化土壤改良应助heart采纳,获得100
16秒前
小超仁完成签到 ,获得积分10
17秒前
高分求助中
Deactivation and Catalyst Life Prediction of Ultra-Deep HDS Catalyst for Diesel Fractions 1000
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2413871
求助须知:如何正确求助?哪些是违规求助? 2107496
关于积分的说明 5327445
捐赠科研通 1834866
什么是DOI,文献DOI怎么找? 914241
版权声明 560994
科研通“疑难数据库(出版商)”最低求助积分说明 488838