Heart failure classifications via non‐invasive pressure volume loops from echocardiography

射血分数 心力衰竭 心脏病学 内科学 医学 冲程容积 人工智能 机器学习 计算机科学
作者
Xunjie Liu,Xu Chen,Shaoyan Xia,Feifei Yang,Haogang Zhu,Kunlun He
出处
期刊:Echocardiography-a Journal of Cardiovascular Ultrasound and Allied Techniques [Wiley]
卷期号:40 (11): 1205-1215 被引量:1
标识
DOI:10.1111/echo.15696
摘要

Abstract Background Left ventricular pressure‐volume (LV‐PV) loops provide comprehensive characterization of cardiovascular system in both health and disease, which are the essential element of the hemodynamic evaluation of heart failure (HF). This study attempts to achieve more detailed HF classifications by non‐invasive LV‐PV loops from echocardiography and analyzes contribution of parameters to HF classifications. Methods Firstly, non‐invasive PV loops are established by time‐varying elastance model where LV volume curves were extracted from apical‐four‐chambers view of echocardiographic videos. Then, 16 parameters related to cardiac structure and functions are automatically acquired from PV loops. Next, we applied six machine learning (ML) methods to divide four categories. On this premise, we choose the best performing classifier among machine learning approaches for feature ranking. Finally, we compare the contributions of different parameters to HF classifications. Results By the experimental, the PV loops were successfully acquired in 1076 cases. When single left ventricular ejection fraction (LVEF) is used for HF classifications, the accuracy of the model is 91.67%. When added parameters extracted from ML‐derived LV‐PV loops, the classification accuracy is 96.57%, which improved by 5.1%. Especially, our parameters have a great improvement in the classification of non‐HF controls and heart failure with preserved ejection fraction (HFpEF). Conclusions We successfully presented the classification of HF by machine derived non‐invasive LV‐PV loops, which has the potential to improve the diagnosis and management of heart failure in clinic. Moreover, ventriculo‐arterial (VA) coupling and ventricular efficiency were demonstrated important factors for ML‐based HF classification model besides LVEF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烂漫衫完成签到,获得积分10
1秒前
3秒前
YUN完成签到,获得积分10
5秒前
赵浩宇完成签到,获得积分10
6秒前
Hcc完成签到 ,获得积分10
7秒前
9秒前
糖糖完成签到,获得积分10
11秒前
12秒前
天天快乐应助YI采纳,获得10
12秒前
正直的夏真完成签到,获得积分10
15秒前
16秒前
诗梦完成签到,获得积分10
18秒前
微笑的尔蓝完成签到,获得积分10
19秒前
ChiariRay发布了新的文献求助10
19秒前
21秒前
103921wjk完成签到,获得积分10
22秒前
23秒前
活力晓曼完成签到 ,获得积分10
23秒前
慕青应助科研通管家采纳,获得10
25秒前
烟花应助科研通管家采纳,获得10
25秒前
猪猪hero应助科研通管家采纳,获得10
25秒前
今后应助科研通管家采纳,获得30
25秒前
情怀应助科研通管家采纳,获得10
25秒前
25秒前
WUYONGSHUAI发布了新的文献求助10
25秒前
26秒前
ZD完成签到 ,获得积分10
28秒前
Summer发布了新的文献求助10
29秒前
无尽夏完成签到,获得积分10
29秒前
张张张关注了科研通微信公众号
31秒前
善学以致用应助crillzlol采纳,获得10
33秒前
禾禹泉士发布了新的文献求助10
33秒前
Summer完成签到,获得积分10
34秒前
苦瓜大王完成签到 ,获得积分20
35秒前
36秒前
烟花应助HZY采纳,获得10
37秒前
Hello应助qiulong采纳,获得10
37秒前
乐观小蕊完成签到 ,获得积分10
37秒前
汤汤杨杨完成签到,获得积分10
39秒前
小白t73完成签到 ,获得积分10
41秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799219
求助须知:如何正确求助?哪些是违规求助? 3344889
关于积分的说明 10322248
捐赠科研通 3061362
什么是DOI,文献DOI怎么找? 1680250
邀请新用户注册赠送积分活动 806929
科研通“疑难数据库(出版商)”最低求助积分说明 763451