数学
冯·诺依曼建筑
离散余弦变换
Neumann边界条件
趋同(经济学)
应用数学
规范(哲学)
收敛速度
数学分析
诺依曼级数
边界(拓扑)
系数矩阵
纯数学
特征向量
物理
法学
经济
人工智能
工程类
频道(广播)
电气工程
图像(数学)
量子力学
经济增长
计算机科学
政治学
作者
Xiujun Cheng,Wenzhuo Xiong,Huiru Wang
标识
DOI:10.1142/s021949372340004x
摘要
In this paper, we apply classical non-uniform L1 formula and the compact difference scheme for solving linear fractional systems with Neumann boundary conditions. A novelty and simple demonstration strategy is presented on the convergence analysis in the discrete maximum norm. Moreover, based on the special properties of the resulting coefficient matrix, diagonalization technique and discrete cosine transform (DCT) are adopted to speed up the convergence rate of the proposed method. In addition, the numerical scheme is also extended to the three-dimensional (3D) case. Several numerical experiments are given to support our findings.
科研通智能强力驱动
Strongly Powered by AbleSci AI