已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Oxygen Demand Forecasting and Optimal Scheduling of the Oxygen Gas Systems in Iron- and Steel-Making Enterprises

自回归积分移动平均 氧气 计算机科学 调度(生产过程) 铸铁 运筹学 工艺工程 工程类 运营管理 时间序列 化学 材料科学 冶金 有机化学 机器学习
作者
Zhen Cheng,Peikun Zhang,Li Wang
出处
期刊:Applied sciences [MDPI AG]
卷期号:13 (21): 11618-11618 被引量:4
标识
DOI:10.3390/app132111618
摘要

Due to the imbalance between the supply and demand of oxygen, the oxygen systems of iron- and steel-making enterprises in China have problems with high oxygen emissions and high pressure in the pipelines, resulting in the energy consumption of oxygen production being high. To reduce the energy consumption of oxygen systems, this study took a large-scale iron- and steel-making enterprise as a case study and developed a two-stage forecasting and scheduling model. The novel aspect and progressiveness of this work are as follows: First, an oxygen demand forecasting model was developed based on the backpropagation neural network with genetic algorithm optimization (GABP) and is driven only by historical data. Compared with some complex models in the literature, although the accuracy of this model has been reduced, the model does not need to consider production plans for other process steps, making it more practical and feasible. Second, different from the existing literature, an oxygen production scheduling model was developed for load-variable ASUs with an internal compression process, and both the oxygen emissions and pipeline pressure are included in the objective function. The case study showed that based on the oxygen demand forecast and optimal scheduling, the oxygen emissions and pipeline pressure in the studied iron- and steel-making enterprise can be significantly reduced, thereby achieving considerable energy-saving effects and economic benefits. Specifically, the following conclusions were obtained: (1) For the oxygen demand forecast, the prediction accuracy of the GABP model was better than that of the ARIMA model. The average MAPE of the 12 sets of data of the ARIMA and GABP models was 23.8% and 20.2%, respectively. (2) By comparing the scheduling results and the field data, it was found that after scheduling, the amount of oxygen emissions decreased by 6.32%, the pipeline pressure decreased by 0.61%, and the energy consumption of oxygen compression decreased by 1.6%. Considering both the oxygen emission loss and the energy consumption of oxygen compression, the total power consumption of the studied oxygen system was reduced by 1.38%, resulting in electricity cost savings of approximately 9.03 million RMB per year.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的迎梦完成签到 ,获得积分10
1秒前
柳树完成签到,获得积分10
1秒前
ikutovaya发布了新的文献求助10
2秒前
2秒前
ANK发布了新的文献求助10
2秒前
江枫渔火VC完成签到 ,获得积分10
3秒前
典雅的皓轩完成签到 ,获得积分10
4秒前
欣雪完成签到 ,获得积分10
5秒前
FiFi完成签到 ,获得积分10
6秒前
6秒前
6秒前
ontheway发布了新的文献求助10
6秒前
322628发布了新的文献求助10
6秒前
生动的若之完成签到 ,获得积分10
8秒前
yicui发布了新的文献求助10
8秒前
芭蕾恰恰舞完成签到,获得积分10
8秒前
丘比特应助ANK采纳,获得10
8秒前
雅典的宠儿完成签到 ,获得积分10
8秒前
roro熊完成签到,获得积分10
9秒前
tanrui发布了新的文献求助10
10秒前
一二完成签到 ,获得积分10
10秒前
11秒前
DD发布了新的文献求助10
12秒前
孤独蘑菇完成签到 ,获得积分10
13秒前
tanrui完成签到,获得积分10
14秒前
水晶鞋完成签到 ,获得积分10
14秒前
碧蓝雁风完成签到 ,获得积分10
15秒前
懒得可爱完成签到,获得积分10
16秒前
XuChen发布了新的文献求助10
17秒前
17秒前
汉堡包应助tanrui采纳,获得10
18秒前
asdf完成签到 ,获得积分10
18秒前
jiege完成签到 ,获得积分10
18秒前
追风完成签到,获得积分10
18秒前
学习要认真喽完成签到 ,获得积分10
19秒前
忽远忽近的她完成签到 ,获得积分10
19秒前
19秒前
callit完成签到 ,获得积分10
20秒前
clelo完成签到 ,获得积分10
20秒前
coisini完成签到 ,获得积分10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5763321
求助须知:如何正确求助?哪些是违规求助? 5540592
关于积分的说明 15404702
捐赠科研通 4899136
什么是DOI,文献DOI怎么找? 2635354
邀请新用户注册赠送积分活动 1583459
关于科研通互助平台的介绍 1538528