亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Parameter-Efficient Transfer Learning for Remote Sensing Image–Text Retrieval

计算机科学 学习迁移 水准点(测量) 人工智能 图像检索 任务(项目管理) 机器学习 上下文图像分类 深度学习 模式识别(心理学) 图像(数学) 管理 经济 地理 大地测量学
作者
Yuan Yuan,Yang Zhan,Zhitong Xiong
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-14 被引量:31
标识
DOI:10.1109/tgrs.2023.3308969
摘要

Vision-and-language pre-training (VLP) models have experienced a surge in popularity recently. By fine-tuning them on specific datasets, significant performance improvements have been observed in various tasks. However, full fine-tuning of VLP models not only consumes a significant amount of computational resources but also has a significant environmental impact. Moreover, as remote sensing (RS) data is constantly being updated, full fine-tuning may not be practical for real-world applications. To address this issue, in this work, we investigate the parameter-efficient transfer learning (PETL) method to effectively and efficiently transfer visual-language knowledge from the natural domain to the RS domain on the image-text retrieval task. To this end, we make the following contributions. 1) We construct a novel and sophisticated PETL framework for the RS image-text retrieval (RSITR) task, which includes the pretrained CLIP model, a multimodal remote sensing adapter, and a hybrid multi-modal contrastive (HMMC) learning objective; 2) To deal with the problem of high intra-modal similarity in RS data, we design a simple yet effective HMMC loss; 3) We provide comprehensive empirical studies for PETL-based RS image-text retrieval. Our results demonstrate that the proposed method is promising and of great potential for practical applications. 4) We benchmark extensive state-of-the-art PETL methods on the RSITR task. Our proposed model only contains 0.16M training parameters, which can achieve a parameter reduction of 98.9% compared to full fine-tuning, resulting in substantial savings in training costs. Our retrieval performance exceeds traditional methods by 7-13% and achieves comparable or better performance than full fine-tuning. This work can provide new ideas and useful insights for RS vision-language tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桥西小河完成签到 ,获得积分10
14秒前
nojego完成签到,获得积分10
32秒前
Galri完成签到 ,获得积分10
57秒前
儒雅海秋完成签到,获得积分10
1分钟前
2分钟前
2分钟前
zz发布了新的文献求助10
2分钟前
小马甲应助zz采纳,获得10
2分钟前
高高的绮烟关注了科研通微信公众号
3分钟前
3分钟前
3分钟前
无情的友容完成签到 ,获得积分10
3分钟前
3分钟前
5分钟前
5分钟前
Axel完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
6分钟前
8分钟前
8分钟前
科研通AI5应助尼克狐尼克采纳,获得10
8分钟前
8分钟前
李健应助科研通管家采纳,获得10
8分钟前
英俊的铭应助科研通管家采纳,获得30
8分钟前
科研通AI2S应助科研通管家采纳,获得30
8分钟前
8分钟前
9分钟前
9分钟前
10分钟前
10分钟前
fsznc完成签到 ,获得积分0
10分钟前
科研通AI6应助科研通管家采纳,获得30
10分钟前
11分钟前
11分钟前
CodeCraft应助bobo采纳,获得10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Pediatric Injectable Drugs 500
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4377228
求助须知:如何正确求助?哪些是违规求助? 3872894
关于积分的说明 12068235
捐赠科研通 3515980
什么是DOI,文献DOI怎么找? 1929414
邀请新用户注册赠送积分活动 971024
科研通“疑难数据库(出版商)”最低求助积分说明 869673